论文标题

MM-PCQA:无参考点云质量评估的多模式学习

MM-PCQA: Multi-Modal Learning for No-reference Point Cloud Quality Assessment

论文作者

Zhang, Zicheng, Sun, Wei, Min, Xiongkuo, Zhou, Quan, He, Jun, Wang, Qiyuan, Zhai, Guangtao

论文摘要

自预计不断增加的3D视觉应用程序将为用户提供具有成本效益和高质量的体验以来,人们非常强调了点云的视觉质量。回顾点云质量评估(PCQA)方法的开发,通常通过利用单模式信息(即从2D投影或3D点云中提取)来评估视觉质量。 2D投影包含丰富的纹理和语义信息,但高度依赖于观点,而3D点云对几何变形和对观点的不变更敏感。因此,为了利用点云和投影图像方式的优势,我们提出了一种新型的无引用点云质量评估(NR-PCQA)度量,以多模式方式。在具体上,我们将点云分为子模型,以表示局部几何变形,例如点移和下采样。然后,我们将点云渲染为2D图像投影,以进行纹理特征提取。为了实现目标,子模型和投影图像由基于点和基于图像的神经网络编码。最后,使用对称的跨模式注意来融合多模式质量意识的信息。实验结果表明,我们的方法的表现都优于所有最新方法,并且远远超过了先前的NR-PCQA方法,这突出了所提出方法的有效性。该代码可在https://github.com/zzc-1998/mm-pcqa上找到。

The visual quality of point clouds has been greatly emphasized since the ever-increasing 3D vision applications are expected to provide cost-effective and high-quality experiences for users. Looking back on the development of point cloud quality assessment (PCQA) methods, the visual quality is usually evaluated by utilizing single-modal information, i.e., either extracted from the 2D projections or 3D point cloud. The 2D projections contain rich texture and semantic information but are highly dependent on viewpoints, while the 3D point clouds are more sensitive to geometry distortions and invariant to viewpoints. Therefore, to leverage the advantages of both point cloud and projected image modalities, we propose a novel no-reference point cloud quality assessment (NR-PCQA) metric in a multi-modal fashion. In specific, we split the point clouds into sub-models to represent local geometry distortions such as point shift and down-sampling. Then we render the point clouds into 2D image projections for texture feature extraction. To achieve the goals, the sub-models and projected images are encoded with point-based and image-based neural networks. Finally, symmetric cross-modal attention is employed to fuse multi-modal quality-aware information. Experimental results show that our approach outperforms all compared state-of-the-art methods and is far ahead of previous NR-PCQA methods, which highlights the effectiveness of the proposed method. The code is available at https://github.com/zzc-1998/MM-PCQA.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源