论文标题
通过自我监督的方法来增强语义理解,用于抽象对话摘要
Enhancing Semantic Understanding with Self-supervised Methods for Abstractive Dialogue Summarization
论文作者
论文摘要
上下文化的单词嵌入可以导致自然语言理解中最新的表演。最近,诸如伯特(Bert)之类的预先训练的深层上下文化的文本编码器显示了其在改善包括抽象性摘要在内的自然语言任务方面的潜力。对话摘要中的现有方法着重于将大型语言模型纳入摘要任务,该任务是在大规模语料库中培训的,这些任务由新闻文章组成,而不是多个演讲者的对话。在本文中,我们介绍了自我监督的方法,以补偿培训对话摘要模型的缺点。我们的原则是使用借口对话文本检测不一致的信息流,以增强伯特在对话文本表示形式上的能力。我们使用增强的BERT在共享的编码器架构上构建并微调一个抽象性对话摘要模型。我们通过Samsum语料库(Samsum copus)进行了验证评估我们的抽象对话摘要,这是一个最近介绍的带有抽象性对话摘要的数据集。我们所有的方法都为在胭脂分数中测得的抽象摘要做出了改进。通过一项广泛的消融研究,我们还向关键模型超参数,切换话语和掩盖对话者的概率提出了灵敏度分析。
Contextualized word embeddings can lead to state-of-the-art performances in natural language understanding. Recently, a pre-trained deep contextualized text encoder such as BERT has shown its potential in improving natural language tasks including abstractive summarization. Existing approaches in dialogue summarization focus on incorporating a large language model into summarization task trained on large-scale corpora consisting of news articles rather than dialogues of multiple speakers. In this paper, we introduce self-supervised methods to compensate shortcomings to train a dialogue summarization model. Our principle is to detect incoherent information flows using pretext dialogue text to enhance BERT's ability to contextualize the dialogue text representations. We build and fine-tune an abstractive dialogue summarization model on a shared encoder-decoder architecture using the enhanced BERT. We empirically evaluate our abstractive dialogue summarizer with the SAMSum corpus, a recently introduced dataset with abstractive dialogue summaries. All of our methods have contributed improvements to abstractive summary measured in ROUGE scores. Through an extensive ablation study, we also present a sensitivity analysis to critical model hyperparameters, probabilities of switching utterances and masking interlocutors.