论文标题
Semsegdepth:语义细分和深度完成的组合模型
SemSegDepth: A Combined Model for Semantic Segmentation and Depth Completion
论文作者
论文摘要
整体场景的理解对于自主机的性能至关重要。在本文中,我们提出了一个新的端到端模型,用于共同执行语义细分和深度完成。最近的绝大多数方法都将语义细分和深度完成作为独立任务。我们的方法取决于RGB和稀疏深度作为我们模型的输入,并产生密集的深度图和相应的语义分割图像。它由特征提取器,深度完成分支,语义分割分支和联合分支组成,该分支进一步处理语义和深度信息。在虚拟Kitti 2数据集上进行的实验,证明并提供了进一步的证据,即在多任务网络中将两个任务,语义细分和深度完成都结合在一起,可以有效地提高每个任务的性能。代码可从https://github.com/juanb09111/smantic Depth获得。
Holistic scene understanding is pivotal for the performance of autonomous machines. In this paper we propose a new end-to-end model for performing semantic segmentation and depth completion jointly. The vast majority of recent approaches have developed semantic segmentation and depth completion as independent tasks. Our approach relies on RGB and sparse depth as inputs to our model and produces a dense depth map and the corresponding semantic segmentation image. It consists of a feature extractor, a depth completion branch, a semantic segmentation branch and a joint branch which further processes semantic and depth information altogether. The experiments done on Virtual KITTI 2 dataset, demonstrate and provide further evidence, that combining both tasks, semantic segmentation and depth completion, in a multi-task network can effectively improve the performance of each task. Code is available at https://github.com/juanb09111/semantic depth.