论文标题

有关半阳性张量和张量互补性问题的更多信息

More on semipositive tensor and tensor complementarity problem

论文作者

Deb, R., Das, A. K.

论文摘要

近年来,在张量互补问题的背景下,将几类结构化矩阵扩展到张量的类别。张量互补性问题是一类非线性互补问题,其中所涉及的功能是张量定义的特殊多项式。半阳性和严格的半阳性张量在张量互补问题的研究中起着重要作用。本文考虑了半阳性张量的一些重要特性。我们建立半阳性张量的不变性属性。我们证明,张量具有半阳性张量。提出了偶数行对角线半阳性张量与其多数化矩阵之间的关系。 关键字:张量互补性问题,半阳性张量,半主酮矩阵,无效矢量,多数化矩阵。

In recent years several classes of structured matrices are extended to classes of tensors in the context of tensor complementarity problem. The tensor complementarity problem is a class of nonlinear complementarity problem where the involved functions are special polynomials defined by a tensor. Semipositive and strictly semipositive tensors play an important role in the study of the tensor complementarity problem. The article considers some important properties of semipositive tensor. We establish invariance property of semipositive tensor. We prove necessary and sufficient conditions for a tensor to be semipositive tensor. A relation between even order row diagonal semipositive tensor and its majorization matrix is proposed. Keywords: Tensor complementarity problem, semipositive tensor, semimonotone matrix, null vector, majorization matrix.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源