论文标题

量子混合状态编译

Quantum Mixed State Compiling

论文作者

Ezzell, Nic, Ball, Elliott M., Siddiqui, Aliza U., Wilde, Mark M., Sornborger, Andrew T., Coles, Patrick J., Holmes, Zoë

论文摘要

学习量子电路准备给定的混合状态的任务是基本的量子子例程。我们提出了一种跨量子算法(VQA),以学习适合近期硬件的混合状态。我们的算法代表了以前的VQA的概括,旨在为纯状态学习制备电路。我们认为两种不同的Ansätze来编译目标状态;第一个是基于学习国家的纯化,而第二个则是将其表示为纯状态的凸组合。在这两种情况下,存储和操纵编译状态所需的资源都随近似的等级而增长。因此,通过学习目标状态的级别近似值,我们的算法提供了一种压缩状态以进行更有效处理的方法。作为我们算法的副产品,人们有效地了解了目标状态的主要成分,因此我们的算法进一步为主成分分析提供了一种新的方法。我们通过广泛的数值实现研究了算法的功效,这表明可以以这种方式学习许多身体系统的典型随机状态和热状态。此外,我们在量子硬件上演示了如何使用算法来研究硬件噪声引起的状态。

The task of learning a quantum circuit to prepare a given mixed state is a fundamental quantum subroutine. We present a variational quantum algorithm (VQA) to learn mixed states which is suitable for near-term hardware. Our algorithm represents a generalization of previous VQAs that aimed at learning preparation circuits for pure states. We consider two different ansätze for compiling the target state; the first is based on learning a purification of the state and the second on representing it as a convex combination of pure states. In both cases, the resources required to store and manipulate the compiled state grow with the rank of the approximation. Thus, by learning a lower rank approximation of the target state, our algorithm provides a means of compressing a state for more efficient processing. As a byproduct of our algorithm, one effectively learns the principal components of the target state, and hence our algorithm further provides a new method for principal component analysis. We investigate the efficacy of our algorithm through extensive numerical implementations, showing that typical random states and thermal states of many body systems may be learnt this way. Additionally, we demonstrate on quantum hardware how our algorithm can be used to study hardware noise-induced states.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源