论文标题
使用广义分数衍生物的三角rosen-morse势框架中的重膜质量
Heavy-Meson Masses in the Framework of Trigonometric Rosen-Morse Potential Using the Generalized Fractional Derivative
论文作者
论文摘要
三角rosen-morse电势被用作中间的潜在相互作用。扩展的Nikiforov-uvarov方法用于分析n- radial分数schrodinger方程。使用广义分数衍生物,以分数形式获得了能量特征值。当前的发现用于计算含有炭,底蒙和重型介子等介体的质量。当前的发现优于其他最近的研究,因此与实验数据表明了良好的一致性,因此,分数参数对于优化梅森质量至关重要。
Trigonometric Rosen-Morse Potential is employed as a mesonic potential interaction. The extended Nikiforov-Uvarov method is used to solve the N-radial Fractional Schrodinger equation analytically. Using the generalized fractional derivative, the energy eigenvalues are obtained in the fractional form. The current findings are used to calculate the masses of mesons such as charmonium, bottomonium, and heavy-light mesons. The current findings are superior to those of other recent studies and show good agreement with experimental data as a result, the fractional parameter is crucial in optimizing meson masses.