论文标题

对抗性染色转移以研究颜色变化对细胞实例分割的影响

Adversarial Stain Transfer to Study the Effect of Color Variation on Cell Instance Segmentation

论文作者

Wu, Huaqian, Souedet, Nicolas, Mabillon, Camille, Jan, Caroline, Clouchoux, Cédric, Delzescaux, Thierry

论文摘要

由多种因素引起的组织学图像的染色颜色变化不仅是病理学家的视觉诊断,而且是细胞分割算法的挑战。为了消除颜色变化,已经提出了许多染色归一化方法。但是,大多数是为苏木精和曙红染色图像而设计的,并且在免疫组织化学染色图像上表现不佳。当前的细胞分割方法系统地将染色归一化作为预处理步骤,但是尚未定量研究颜色变化带来的影响。在本文中,我们制作了五组具有不同颜色的Neun染色图像。我们应用了一种深度学习的图像录制方法,以在组织学图像组之间执行色彩转移。最后,我们改变了分割集的颜色,并量化了颜色变化对细胞分割的影响。结果证明了在随后的分析之前必须进行颜色归一化的必要性。

Stain color variation in histological images, caused by a variety of factors, is a challenge not only for the visual diagnosis of pathologists but also for cell segmentation algorithms. To eliminate the color variation, many stain normalization approaches have been proposed. However, most were designed for hematoxylin and eosin staining images and performed poorly on immunohistochemical staining images. Current cell segmentation methods systematically apply stain normalization as a preprocessing step, but the impact brought by color variation has not been quantitatively investigated yet. In this paper, we produced five groups of NeuN staining images with different colors. We applied a deep learning image-recoloring method to perform color transfer between histological image groups. Finally, we altered the color of a segmentation set and quantified the impact of color variation on cell segmentation. The results demonstrated the necessity of color normalization prior to subsequent analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源