论文标题

粘性camassa-呈梯度噪声的粘性凸轮方程

Global well-posedness of the viscous Camassa--Holm equation with gradient noise

论文作者

Holden, Helge, Karlsen, Kenneth H., Pang, Peter H. C.

论文摘要

我们分析了一个非线性随机偏微分方程,该方程对应于粘性浅水方程(camassa-holm型),该方程受到对流,依赖位置依赖性噪声项的扰动。我们使用Galerkin近似值和随机紧凑型方法建立了$ H^m $($ m \ in \ Mathbb {n} $)中的弱解决方案的存在。我们得出了一系列的先验估计,该估计结合了模型特异性的能量定律与非标准的规律性估计。我们系统地使用了随机的毛衣不平等,还可以停止时间技术。与溶液的融合证明是通过盖尔金解决方案定律和skorokhod -jakubowski A.S.准派空间中随机变量的表示。在整个分析过程中,在空间依赖的噪声函数构成并发症,反复引起非线性术语,这些术语“平衡”方程中的Martingale部分与二阶Stratonovich-to-Itô校正项。最后,通过路径唯一性,我们得出结论,构造的溶液在概率上是强大的。唯一性证明基于有限维的ITô公式和Diperna-lim-enty型正则化程序,其中正则化误差由第一阶和二阶换向器控制。

We analyse a nonlinear stochastic partial differential equation that corresponds to a viscous shallow water equation (of the Camassa--Holm type) perturbed by a convective, position-dependent noise term. We establish the existence of weak solutions in $H^m$ ($m\in\mathbb{N}$) using Galerkin approximations and the stochastic compactness method. We derive a series of a priori estimates that combine a model-specific energy law with non-standard regularity estimates. We make systematic use of a stochastic Gronwall inequality and also stopping time techniques. The proof of convergence to a solution argues via tightness of the laws of the Galerkin solutions, and Skorokhod--Jakubowski a.s. representations of random variables in quasi-Polish spaces. The spatially dependent noise function constitutes a complication throughout the analysis, repeatedly giving rise to nonlinear terms that "balance" the martingale part of the equation against the second-order Stratonovich-to-Itô correction term. Finally, via pathwise uniqueness, we conclude that the constructed solutions are probabilistically strong. The uniqueness proof is based on a finite-dimensional Itô formula and a DiPerna--Lions type regularisation procedure, where the regularisation errors are controlled by first and second order commutators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源