论文标题

情感三胞胎提取的结构偏见

Structural Bias for Aspect Sentiment Triplet Extraction

论文作者

Zhang, Chen, Ren, Lei, Ma, Fang, Wang, Jingang, Wu, Wei, Song, Dawei

论文摘要

结构性偏见最近被利用用于方面的三胞胎提取(ASTE),并改善了性能。另一方面,人们认识到,明确纳入结构性偏见会对效率产生负面影响,而验证的语言模型(PLM)已经可以捕获隐式结构。因此,出现了一个自然的问题:在PLM的背景下,结构性偏见仍然是必要的吗?为了回答这个问题,我们建议通过使用适配器在PLM中整合结构性偏差,并使用便宜的计算相对位置结构代替句法依赖性结构来解决效率问题。基准测试评估是在Semeval数据集上进行的。结果表明,我们提出的结构适配器对PLM有益,并在一系列强大的基准范围内实现最先进的性能,但具有光参数需求和低潜伏期。同时,我们引起了这样的担忧,即当前的评估默认值为小规模的数据不足。因此,我们为ASTE发布了一个大规模数据集。新数据集的结果暗示,结构适配器在大规模上自信地有效和有效。总体而言,我们得出一个结论,即即使使用PLM,结构偏见仍然是必要的。

Structural bias has recently been exploited for aspect sentiment triplet extraction (ASTE) and led to improved performance. On the other hand, it is recognized that explicitly incorporating structural bias would have a negative impact on efficiency, whereas pretrained language models (PLMs) can already capture implicit structures. Thus, a natural question arises: Is structural bias still a necessity in the context of PLMs? To answer the question, we propose to address the efficiency issues by using an adapter to integrate structural bias in the PLM and using a cheap-to-compute relative position structure in place of the syntactic dependency structure. Benchmarking evaluation is conducted on the SemEval datasets. The results show that our proposed structural adapter is beneficial to PLMs and achieves state-of-the-art performance over a range of strong baselines, yet with a light parameter demand and low latency. Meanwhile, we give rise to the concern that the current evaluation default with data of small scale is under-confident. Consequently, we release a large-scale dataset for ASTE. The results on the new dataset hint that the structural adapter is confidently effective and efficient to a large scale. Overall, we draw the conclusion that structural bias shall still be a necessity even with PLMs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源