论文标题

PULSEDL-II:一种用于核检测器信号的时间和能量提取的芯片神经网络加速器

PulseDL-II: A System-on-Chip Neural Network Accelerator for Timing and Energy Extraction of Nuclear Detector Signals

论文作者

Ai, Pengcheng, Deng, Zhi, Wang, Yi, Gong, Hui, Ran, Xinchi, Lang, Zijian

论文摘要

配备高速数字化器的前端电子设备正在使用并提出用于将来的核检测器。最近的文献表明,在处理来自核检测器的数字信号时,深度学习模型,尤其是一维卷积神经网络。模拟和实验证明了该领域神经网络的令人满意的准确性和其他优势。但是,仍需要研究特定的硬件加速此类在线操作的模型。在这项工作中,我们介绍了pulsedl-ii,这是一种专门设计的,专门设计用于事件功能(时间,能量等)从具有深度学习的脉冲中提取。根据先前的版本,PULSEDL-II将RISC CPU纳入系统结构,以提高功能灵活性和完整性。 SOC中的神经网络加速器采用了三级(算术单元,处理元件,神经网络)层次结构,并促进了数字设计的参数优化。此外,我们设计了一种与深度学习框架(例如,Tensorflow)兼容的量化方案。我们单独验证PulsEdl-II在现场可编程栅极阵列(FPGA)上的正确操作,并在包括直接数字合成(DDS)和模数转换器(ADC)的实验设置中验证了实验设置。提出的系统达到了60 ps的时间分辨率,信号噪声比(SNR)的0.40%的能量分辨率为47.4 dB。

Front-end electronics equipped with high-speed digitizers are being used and proposed for future nuclear detectors. Recent literature reveals that deep learning models, especially one-dimensional convolutional neural networks, are promising when dealing with digital signals from nuclear detectors. Simulations and experiments demonstrate the satisfactory accuracy and additional benefits of neural networks in this area. However, specific hardware accelerating such models for online operations still needs to be studied. In this work, we introduce PulseDL-II, a system-on-chip (SoC) specially designed for applications of event feature (time, energy, etc.) extraction from pulses with deep learning. Based on the previous version, PulseDL-II incorporates a RISC CPU into the system structure for better functional flexibility and integrity. The neural network accelerator in the SoC adopts a three-level (arithmetic unit, processing element, neural network) hierarchical architecture and facilitates parameter optimization of the digital design. Furthermore, we devise a quantization scheme compatible with deep learning frameworks (e.g., TensorFlow) within a selected subset of layer types. We validate the correct operations of PulseDL-II on field programmable gate arrays (FPGA) alone and with an experimental setup comprising a direct digital synthesis (DDS) and analog-to-digital converters (ADC). The proposed system achieved 60 ps time resolution and 0.40% energy resolution at signal to noise ratio (SNR) of 47.4 dB.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源