论文标题
超透明卷积神经网络基于聚类技术
Hypergraph convolutional neural network-based clustering technique
论文作者
论文摘要
本文构成了新型的Hypergraph卷积神经网络基于聚类技术。该技术用于解决Citeseer数据集和CORA数据集的聚类问题。每个数据集都包含特征矩阵和HyperGraph的发射矩阵(即,由特征矩阵构造)。这种新颖的聚类方法使用了两个矩阵。最初,使用HyperGraph自动编码器将入射矩阵和特征矩阵从高维空间转换为低维空间。最后,我们将K-均值聚类技术应用于转换的矩阵。与其他经典聚类技术相比,基于Hypergraph卷积神经网络(CNN)的聚类技术在实验过程中的性能提出了更好的结果。
This paper constitutes the novel hypergraph convolutional neural networkbased clustering technique. This technique is employed to solve the clustering problem for the Citeseer dataset and the Cora dataset. Each dataset contains the feature matrix and the incidence matrix of the hypergraph (i.e., constructed from the feature matrix). This novel clustering method utilizes both matrices. Initially, the hypergraph auto-encoders are employed to transform both the incidence matrix and the feature matrix from high dimensional space to low dimensional space. In the end, we apply the k-means clustering technique to the transformed matrix. The hypergraph convolutional neural network (CNN)-based clustering technique presented a better result on performance during experiments than those of the other classical clustering techniques.