论文标题
与交换性主要理想领域相比,非矩阵的充分性
Adequacy of nonsingular matrices over commutative principal ideal domains
论文作者
论文摘要
赫尔默(Helmer)在公牛中提出了通勤领域充分性的概念。 Amer.math。 Soc。,49(1943),225--236。在本文中,我们将充分性的概念扩展到了非交流性贝佐特戒指。我们表明,在交换性主理想域上的一组非二阶矩阵已经足够了。
The notion of the adequacy of commutative domains was introduced by Helmer in Bull. Amer.Math. Soc., 49 (1943), 225--236. In the present paper we extend the concept of adequacy to noncommutative Bézout rings. We show that the set of nonsingular second-order matrices over a commutative principal ideal domain is adequate.