论文标题
抑制内置环境数据集中的噪音,以减少联邦学习收敛的通信回合
Suppressing Noise from Built Environment Datasets to Reduce Communication Rounds for Convergence of Federated Learning
论文作者
论文摘要
Smart Sensing提供了一种更轻松,方便的数据驱动机制,用于在建筑环境中监视和控制。在建筑环境中产生的数据对隐私敏感且有限。 Federated Learning是一个新兴的范式,可在多个参与者之间提供隐私的合作,以进行模型培训,而无需共享私人和有限的数据。参与者数据集中的嘈杂标签降低了表现,并增加了联合学习收敛的通信赛数。如此大的沟通回合需要更多的时间和精力来训练模型。在本文中,我们提出了一种联合学习方法,以抑制每个参与者数据集中嘈杂标签的不平等分布。该方法首先估算每个参与者数据集的噪声比,并使用服务器数据集将噪声比归一化。所提出的方法可以处理服务器数据集中的偏差,并最大程度地减少其对参与者数据集的影响。接下来,我们使用每个参与者的归一化噪声比和影响来计算参与者的最佳加权贡献。我们进一步得出了表达式,以估计提出方法收敛所需的通信回合数。最后,实验结果证明了拟议方法对现有技术的有效性,从交流回合和在建筑环境中实现了绩效。
Smart sensing provides an easier and convenient data-driven mechanism for monitoring and control in the built environment. Data generated in the built environment are privacy sensitive and limited. Federated learning is an emerging paradigm that provides privacy-preserving collaboration among multiple participants for model training without sharing private and limited data. The noisy labels in the datasets of the participants degrade the performance and increase the number of communication rounds for convergence of federated learning. Such large communication rounds require more time and energy to train the model. In this paper, we propose a federated learning approach to suppress the unequal distribution of the noisy labels in the dataset of each participant. The approach first estimates the noise ratio of the dataset for each participant and normalizes the noise ratio using the server dataset. The proposed approach can handle bias in the server dataset and minimizes its impact on the participants' dataset. Next, we calculate the optimal weighted contributions of the participants using the normalized noise ratio and influence of each participant. We further derive the expression to estimate the number of communication rounds required for the convergence of the proposed approach. Finally, experimental results demonstrate the effectiveness of the proposed approach over existing techniques in terms of the communication rounds and achieved performance in the built environment.