论文标题
删除基于审核的建议的图形对比度学习
Disentangled Graph Contrastive Learning for Review-based Recommendation
论文作者
论文摘要
用户审核数据有助于减轻许多推荐系统中的数据稀疏问题。在基于审核的建议方法中,审核数据被视为辅助信息,可以改善用户评级预测任务的学习用户/项目或交互表示的质量。但是,这些方法通常以整体方式对用户项目进行建模,而忽略了其背后的潜在因素的纠缠,例如价格,质量或外观,从而导致了次优表示并降低了可解释性。在本文中,我们建议通过文本审核数据基于不同的潜在因素对基于审核的建议(DGCLR)进行分开的图形对比学习框架(DGCLR)。为此,我们首先将相互作用的互动分布模拟,从审核数据和用户项目图数据中的结构信息中的语义信息上的分布进行建模,从而形成了几个因子图。然后,将一个分解的消息传递机制旨在学习因子图上的分离用户/项目表示,这使我们能够通过设计的注意机制来进一步表征相互作用并自适应地结合了来自多个因素的预测评分。最后,我们设定了两个因素的对比学习目标,以减轻稀疏性问题,并更准确地对与每个因素相关的用户/项目和交互功能进行建模。五个基准数据集的经验结果验证了DGCLR优于最先进方法的优势。提供进一步的分析来解释DGCLR中学习的意图因素和评级预测。
User review data is helpful in alleviating the data sparsity problem in many recommender systems. In review-based recommendation methods, review data is considered as auxiliary information that can improve the quality of learned user/item or interaction representations for the user rating prediction task. However, these methods usually model user-item interactions in a holistic manner and neglect the entanglement of the latent factors behind them, e.g., price, quality, or appearance, resulting in suboptimal representations and reducing interpretability. In this paper, we propose a Disentangled Graph Contrastive Learning framework for Review-based recommendation (DGCLR), to separately model the user-item interactions based on different latent factors through the textual review data. To this end, we first model the distributions of interactions over latent factors from both semantic information in review data and structural information in user-item graph data, forming several factor graphs. Then a factorized message passing mechanism is designed to learn disentangled user/item representations on the factor graphs, which enable us to further characterize the interactions and adaptively combine the predicted ratings from multiple factors via a devised attention mechanism. Finally, we set two factor-wise contrastive learning objectives to alleviate the sparsity issue and model the user/item and interaction features pertinent to each factor more accurately. Empirical results over five benchmark datasets validate the superiority of DGCLR over the state-of-the-art methods. Further analysis is offered to interpret the learned intent factors and rating prediction in DGCLR.