论文标题
解决线性系统的不可行性:一种参数化方法
Resolving Infeasibility of Linear Systems: A Parameterized Approach
论文作者
论文摘要
确定大型线性方程和不平等系统的可行性是最基本的算法之一。但是,由于数据不准确或建模误差,在实际应用中,人们通常会面临不可行的线性系统。已经提出了广泛的理论和实用方法,用于对线性系统的可行性分析。这通常等于检测一个小尺寸$ k $的可行性阻滞剂,这是一组方程式和不平等,从大小$ m $的大型系统中删除或扰动会产生可行的系统。这激发了一种参数化的方法来进行后备用分析,我们的目标是在固定参数时间$ f(k)\ cdot m^{o(1)} $中找到最多$ k $的可行性阻滞剂。我们建立了非常有限的设置,以确定删除集的最大大小,正/负右侧的数量,树宽,路径宽度和TreeDepth的不同选择,我们建立了非常有限的设置中的参数性无关性($ W [1] $ - 和$ np $ - hardness)。此外,我们排除了通过删除集的大小和负右侧的数量的MINFB的多项式压缩。此外,当系统的每一行对应于差异约束时,我们开发了通过这些参数的各种组合来参数化的固定参数算法。我们的算法捕获了有向反馈弧集的情况,这是一个基本的参数化问题,其固定参数障碍性由Chen等人显示。 (Stoc 2008)。
Deciding feasibility of large systems of linear equations and inequalities is one of the most fundamental algorithmic tasks. However, due to data inaccuracies or modeling errors, in practical applications one often faces linear systems that are infeasible. Extensive theoretical and practical methods have been proposed for post-infeasibility analysis of linear systems. This generally amounts to detecting a feasibility blocker of small size $k$, which is a set of equations and inequalities whose removal or perturbation from the large system of size $m$ yields a feasible system. This motivates a parameterized approach towards post-infeasibility analysis, where we aim to find a feasibility blocker of size at most $k$ in fixed-parameter time $f(k) \cdot m^{O(1)}$. We establish parameterized intractability ($W[1]$- and $NP$-hardness) results already in very restricted settings for different choices of the parameters maximum size of a deletion set, number of positive/negative right-hand sides, treewidth, pathwidth and treedepth. Additionally, we rule out a polynomial compression for MinFB parameterized by the size of a deletion set and the number of negative right-hand sides. Furthermore, we develop fixed-parameter algorithms parameterized by various combinations of these parameters when every row of the system corresponds to a difference constraint. Our algorithms capture the case of Directed Feedback Arc Set, a fundamental parameterized problem whose fixed-parameter tractability was shown by Chen et al. (STOC 2008).