论文标题

基于小波的高频接口动力学损失

Wavelet-based Loss for High-frequency Interface Dynamics

论文作者

Prantl, Lukas, Bender, Jan, Kugelstadt, Tassilo, Thuerey, Nils

论文摘要

生成高度详细的复杂数据是机器学习领域的长期存在且经常被认为的问题。但是,开发细节感知的发电机仍然是一个具有挑战性和开放的问题。生成对抗网络是许多最新方法的基础。但是,他们引入了第二个网络作为损失函数训练,使对学习功能的解释变得更加困难。作为替代方案,我们提出了一种基于小波损耗公式的新方法,该方法在优化方面保持透明。在生成具有高频细节的数据时,基于小波的损耗函数用于克服常规距离指标(例如L1或L2距离)的局限性。我们表明,我们的方法可以在说明性合成测试案例中成功重建高频细节。此外,我们根据物理模拟应用于更复杂的表面时评估性能。以大致近似的模拟为输入,我们的方法在考虑它们的发展方式的同时,将相应的空间详细信息进化。我们从空间和时间频率方面考虑了这个问题,并利用训练有我们小波损失的生成网络来学习表面动力学的所需时空信号。我们通过一组合成波函数测试以及弹性塑料材料的复杂2D和3D动力学测试方法的功能。

Generating highly detailed, complex data is a long-standing and frequently considered problem in the machine learning field. However, developing detail-aware generators remains an challenging and open problem. Generative adversarial networks are the basis of many state-of-the-art methods. However, they introduce a second network to be trained as a loss function, making the interpretation of the learned functions much more difficult. As an alternative, we present a new method based on a wavelet loss formulation, which remains transparent in terms of what is optimized. The wavelet-based loss function is used to overcome the limitations of conventional distance metrics, such as L1 or L2 distances, when it comes to generate data with high-frequency details. We show that our method can successfully reconstruct high-frequency details in an illustrative synthetic test case. Additionally, we evaluate the performance when applied to more complex surfaces based on physical simulations. Taking a roughly approximated simulation as input, our method infers corresponding spatial details while taking into account how they evolve. We consider this problem in terms of spatial and temporal frequencies, and leverage generative networks trained with our wavelet loss to learn the desired spatio-temporal signal for the surface dynamics. We test the capabilities of our method with a set of synthetic wave function tests and complex 2D and 3D dynamics of elasto-plastic materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源