论文标题

伪热系统中特殊表面的交点奇异性的拓扑分类

Topological classification for intersection singularities of exceptional surfaces in pseudo-Hermitian systems

论文作者

Jia, Hongwei, Zhang, Ruo-Yang, Hu, Jing, Xiao, Yixin, Zhu, Yifei, Chan, C. T.

论文摘要

特殊点在非铁官系统的拓扑学中起着关键作用,并且在分类异常点和探索相关现象方面已取得了重大进展。特殊的表面是参数空间中特殊退化性异常的曲面,可以支持超表面奇异性,例如尖端,交叉点和燕尾灾难。在这里,我们从拓扑分类了具有平等时间对称性的通用伪 - 热系统的特殊表面的相交奇异性。通过在本征态的等效关系下构建商空间,我们揭示了这种无间隙结构的拓扑结构可以由三个发电机上的非亚伯自由群体描述。重要的是,该分类预测了一种新型的非热层间拓扑阶段,并且可以系统地解释在保留与对称性的扰动下如何演变出特殊的表面及其相交方式。我们的工作开辟了一条新的途径,用于设计具有强大拓扑阶段的系统,并为诸如感应和激光等应用提供了灵感,该应用可以利用在特殊表面和交叉点中固有的特殊属性。

Exceptional points play a pivotal role in the topology of non-Hermitian systems, and significant advances have been made in classifying exceptional points and exploring the associated phenomena. Exceptional surfaces, which are hypersurfaces of exceptional degeneracies in parameter space, can support hypersurface singularities, such as cusps, intersections and swallowtail catastrophes. Here we topologically classify the intersection singularity of exceptional surfaces for a generic pseudo-Hermitian system with parity-time symmetry. By constructing the quotient space under equivalence relations of eigenstates, we reveal that the topology of such gapless structures can be described by a non-Abelian free group on three generators. Importantly, the classification predicts a new kind of non-Hermitian gapless topological phase and can systematically explain how the exceptional surfaces and their intersections evolve under perturbations with symmetries preserved. Our work opens a new pathway for designing systems with robust topological phases, and provides inspiration for applications such as sensing and lasing which can utilize the special properties inherent in exceptional surfaces and intersections.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源