论文标题
极端姿势识别的信息最大化
Information Maximization for Extreme Pose Face Recognition
论文作者
论文摘要
在本文中,我们试图在抽象嵌入空间中的额叶和轮廓面部图像之间进行连接。我们使用耦合编码器网络利用此连接,将额叶/配置文件脸图像投影到一个常见的潜在嵌入式空间中。提出的模型通过最大化面部两种视图之间的相互信息来迫使嵌入空间中表示的相似性。拟议的耦合编码器从三个贡献中受益于具有极端姿势差异的面孔的三个贡献。首先,我们利用我们的姿势吸引的对比学习来最大化身份的额叶和概况表示之间的相互信息。其次,由在过去的迭代中累积的潜在表示组成的内存缓冲区已集成到模型中,因此它可以比小批量大小相对较多的实例。第三,一种新颖的姿势感知的对抗结构域适应方法迫使模型学习从轮廓到额叶表示的不对称映射。在我们的框架中,耦合编码器学会了扩大真正面孔和冒名顶替面之间的分布之间的余量,从而导致相同身份的不同观点之间产生很高的相互信息。通过对四个基准数据集的广泛实验,评估和消融研究来研究拟议模型的有效性,并与引人入胜的最新算法进行比较。
In this paper, we seek to draw connections between the frontal and profile face images in an abstract embedding space. We exploit this connection using a coupled-encoder network to project frontal/profile face images into a common latent embedding space. The proposed model forces the similarity of representations in the embedding space by maximizing the mutual information between two views of the face. The proposed coupled-encoder benefits from three contributions for matching faces with extreme pose disparities. First, we leverage our pose-aware contrastive learning to maximize the mutual information between frontal and profile representations of identities. Second, a memory buffer, which consists of latent representations accumulated over past iterations, is integrated into the model so it can refer to relatively much more instances than the mini-batch size. Third, a novel pose-aware adversarial domain adaptation method forces the model to learn an asymmetric mapping from profile to frontal representation. In our framework, the coupled-encoder learns to enlarge the margin between the distribution of genuine and imposter faces, which results in high mutual information between different views of the same identity. The effectiveness of the proposed model is investigated through extensive experiments, evaluations, and ablation studies on four benchmark datasets, and comparison with the compelling state-of-the-art algorithms.