论文标题
预测+优化的包装和覆盖LP,在约束中具有未知参数
Predict+Optimize for Packing and Covering LPs with Unknown Parameters in Constraints
论文作者
论文摘要
预测+优化是一个最近提出的框架,它结合了机器学习和限制优化,解决了包含求解时间未知参数的优化问题。目标是预测未知参数,并使用估计值来解决优化问题的估计最佳解决方案。但是,所有先前的作品都集中在未知参数仅出现在优化目标而不是约束中的情况下,其简单原因是,如果限制因素不确定,则估计的最佳解决方案在真实参数下甚至可能是可行的。本文的贡献是两个方面。首先,我们为预测+优化设置提出了一个新颖且实际相关的框架,但是在目标和约束中都有未知参数。我们介绍了校正函数的概念,并在损失函数中的额外惩罚项进行了建模实际情况,在该方案中可以将估计的最佳解决方案修改为可行的解决方案,并在揭示了真实参数后,但以额外的成本进行了修改。其次,我们为我们的框架提出了相应的算法方法,该方法处理所有包装和涵盖线性程序。我们的方法灵感来自先前的曼迪和枪支工作,尽管对我们的不同环境进行了关键的修改和重新启示。实验证明了我们方法比经典方法具有出色的经验性能。
Predict+Optimize is a recently proposed framework which combines machine learning and constrained optimization, tackling optimization problems that contain parameters that are unknown at solving time. The goal is to predict the unknown parameters and use the estimates to solve for an estimated optimal solution to the optimization problem. However, all prior works have focused on the case where unknown parameters appear only in the optimization objective and not the constraints, for the simple reason that if the constraints were not known exactly, the estimated optimal solution might not even be feasible under the true parameters. The contributions of this paper are two-fold. First, we propose a novel and practically relevant framework for the Predict+Optimize setting, but with unknown parameters in both the objective and the constraints. We introduce the notion of a correction function, and an additional penalty term in the loss function, modelling practical scenarios where an estimated optimal solution can be modified into a feasible solution after the true parameters are revealed, but at an additional cost. Second, we propose a corresponding algorithmic approach for our framework, which handles all packing and covering linear programs. Our approach is inspired by the prior work of Mandi and Guns, though with crucial modifications and re-derivations for our very different setting. Experimentation demonstrates the superior empirical performance of our method over classical approaches.