论文标题
复杂的金茨堡 - 兰道方程的定期解决方案在有限域中
Periodic Solutions of the complex Ginzburg-Landau Equation in bounded domains
论文作者
论文摘要
在本文中,我们关注的是复杂的金茨堡 - 兰道(CGL)方程。在有界或无界域中,解决方案对(CGL)的初始边界值问题的全局存在和平滑效应有几个结果。在本文中,我们研究了有限域中(CGL)的时间周期性问题。本文中的主要策略是将(CGL)视为具有单调和非单调扰动的抛物线方程,并应用了Otani(1984)开发的抛物线方程的非单调扰动理论。
In this paper, we are concerned with complex Ginzburg-Landau (CGL) equations. There are several results on the global existence and smoothing effects of solutions to the initial boundary value problem for (CGL) in bounded or unbounded domains. In this paper, we study the time periodic problem for (CGL) in bounded domains. The main strategy in this paper is to regard (CGL) as a parabolic equation with monotone and non-monotone perturbations and to apply non-monotone perturbation theory of parabolic equations developed by Otani (1984).