论文标题
使用广义量子主方程在NISQ计算机上模拟开放量子系统动力学
Simulating Open Quantum System Dynamics on NISQ Computers with Generalized Quantum Master Equations
论文作者
论文摘要
我们提出了一种基于广义量子主方程(GQME)方法的量子算法,以模拟嘈杂的中间尺度量子(NISQ)计算机上的开放量子系统动力学。这种方法克服了Lindblad方程的局限性,该方程假设了弱系统轴耦合和马尔可波,通过为减少密度矩阵的任何元素的任何子集提供了严格的运动方程式。其余自由度的影响产生的记忆内核被用作计算相应的非自动传播器的输入。我们演示了如何使用SZ.-NAGY扩张定理将非单身繁殖物转变为较高维的希尔伯特空间中的单一繁殖物,然后可以在NISQ计算机的量子电路上实施。我们通过分析量子电路深度对降低密度矩阵的对角线元件时,通过分析量子电路深度对结果准确性的影响来验证量子算法。我们的发现表明,我们的方法在NISQ IBM计算机上产生可靠的结果。
We present a quantum algorithm based on the Generalized Quantum Master Equation (GQME) approach to simulate open quantum system dynamics on noisy intermediate-scale quantum (NISQ) computers. This approach overcomes the limitations of the Lindblad equation, which assumes weak system-bath coupling and Markovity, by providing a rigorous derivation of the equations of motion for any subset of elements of the reduced density matrix. The memory kernel resulting from the effect of the remaining degrees of freedom is used as input to calculate the corresponding non-unitary propagator. We demonstrate how the Sz.-Nagy dilation theorem can be employed to transform the non-unitary propagator into a unitary one in a higher-dimensional Hilbert space, which can then be implemented on quantum circuits of NISQ computers. We validate our quantum algorithm as applied to the spin-boson benchmark model by analyzing the impact of the quantum circuit depth on the accuracy of the results when the subset is limited to the diagonal elements of the reduced density matrix. Our findings demonstrate that our approach yields reliable results on NISQ IBM computers.