论文标题
关于结构动力学的拓扑数据分析:持续同源性介绍
On topological data analysis for structural dynamics: an introduction to persistent homology
论文作者
论文摘要
拓扑方法可以提供一种提出新的指标和审查数据的方法的方法,否则可能会忽略这一点。在这项工作中,将通过一个称为拓扑数据分析的主题来量化数据形状的方法。拓扑数据分析(TDA)中的主要工具是持续的同源性。持续的同源性是一种在长度范围内量化数据形状的一种方法。在这项工作中简要讨论了所需的背景和计算持续同源性的方法。然后,拓扑数据分析的思想用于非线性动力学来分析一些常见的吸引子,通过计算其嵌入维度,然后评估其一般拓扑。还将提出一种使用拓扑数据分析来确定时间延迟嵌入的最佳延迟的方法。 TDA还将应用于结构健康监测中的Z24桥案例研究,在该案例研究中将用来仔细检查不同的数据分区,并根据收集数据的条件进行了分类。拓扑数据分析中的度量标准用于比较分区之间的数据。提出的结果表明,损害的存在比温度所产生的影响更大。
Topological methods can provide a way of proposing new metrics and methods of scrutinising data, that otherwise may be overlooked. In this work, a method of quantifying the shape of data, via a topic called topological data analysis will be introduced. The main tool within topological data analysis (TDA) is persistent homology. Persistent homology is a method of quantifying the shape of data over a range of length scales. The required background and a method of computing persistent homology is briefly discussed in this work. Ideas from topological data analysis are then used for nonlinear dynamics to analyse some common attractors, by calculating their embedding dimension, and then to assess their general topologies. A method will also be proposed, that uses topological data analysis to determine the optimal delay for a time-delay embedding. TDA will also be applied to a Z24 Bridge case study in structural health monitoring, where it will be used to scrutinise different data partitions, classified by the conditions at which the data were collected. A metric, from topological data analysis, is used to compare data between the partitions. The results presented demonstrate that the presence of damage alters the manifold shape more significantly than the effects present from temperature.