论文标题

关于von Neumann的Ergodic定理的光谱措施和收敛速率

On spectral measures and convergence rates in von Neumann's Ergodic Theorem

论文作者

Aloisio, M., Carvalho, S. L., de Oliveira, C. R., Souza, E.

论文摘要

我们表明,冯·诺伊曼(Von Neumann)的Ergodic定理中的幂律衰减指数(对于离散系统)是频谱量值的频谱度量指数〜$ 1 $。在这项工作中,我们还证明,在没有光谱差距的情况下,在弱收敛的假设下,冯·诺伊曼(Von Neumann)的ergodic定理中时间平均水平的收敛速率取决于无限度的时间序列。

We show that the power-law decay exponents in von Neumann's Ergodic Theorem (for discrete systems) are the pointwise scaling exponents of a spectral measure at the spectral value~$1$. In this work we also prove that, under an assumption of weak convergence, in the absence of a spectral gap, the convergence rates of the time-average in von Neumann's Ergodic Theorem depend on sequences of time going to infinity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源