论文标题

BottleMod:建模数据流和快速瓶颈分析的任务

BottleMod: Modeling Data Flows and Tasks for Fast Bottleneck Analysis

论文作者

Lößer, Ansgar, Witzke, Joel, Schintke, Florian, Scheuermann, Björn

论文摘要

近年来,科学工作流变得越来越受欢迎。在科学工作流程中,任务通常被视为黑匣子。因此,处理其复杂的相互关系以识别优化潜力和瓶颈本质上很难。科学工作流程的进展取决于几个因素,包括可用的输入数据,可用的计算能力以及I/O和网络带宽。在这里,我们解决了以非常低的开销来预测工作流程进展的问题。为此,我们研究了关键参数及其相互作用的合适形式化,这些参数足以描述输入数据消耗,计算工作和工作流程任务的输出产生。同时,它们允许计算简单,快速的性能预测,包括对工作流运行时的瓶颈分析。分段定义的瓶颈函数来自任务模型的限制功能的离散交叉点。这允许从克服瓶颈中估算潜在的性能提高,并可以用作优化资源分配和工作流执行的基础。

In the recent years, scientific workflows gained more and more popularity. In scientific workflows, tasks are typically treated as black boxes. Dealing with their complex interrelations to identify optimization potentials and bottlenecks is therefore inherently hard. The progress of a scientific workflow depends on several factors, including the available input data, the available computational power, and the I/O and network bandwidth. Here, we tackle the problem of predicting the workflow progress with very low overhead. To this end, we look at suitable formalizations for the key parameters and their interactions which are sufficiently flexible to describe the input data consumption, the computational effort and the output production of the workflow's tasks. At the same time they allow for computationally simple and fast performance predictions, including a bottleneck analysis over the workflow runtime. A piecewise-defined bottleneck function is derived from the discrete intersections of the task models' limiting functions. This allows to estimate potential performance gains from overcoming the bottlenecks and can be used as a basis for optimized resource allocation and workflow execution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源