论文标题

新闻分析中的监督弱:对经济政策不确定性的申请

Weak Supervision in Analysis of News: Application to Economic Policy Uncertainty

论文作者

Trust, Paul, Zahran, Ahmed, Minghim, Rosane

论文摘要

对经济决策的及时数据分析的需求促使大多数经济学家和政策制定者搜索非传统补充数据来源。在这种情况下,正在探索文本数据以丰富传统数据源,因为它易于收集和高度丰富。我们的工作着重于研究文本数据的潜力,特别是新闻文章,以衡量经济政策不确定性(EPU)。经济政策的不确定性被定义为公众无法在新政策和未来经济基本面下预测其决定的结果。量化EPU对于政策制定者,经济学家和投资者来说至关重要,因为它影响了他们对未来经济基本面的期望,并影响其政策,投资和储蓄决策。以前使用新闻文章来衡量EPU的大多数工作都是手册或基于简单的关键字搜索。我们的工作提出了一种基于机器学习的解决方案,涉及较弱的监督,以针对经济政策不确定性对新闻文章进行分类。薄弱的监督被证明是一种有效的机器学习范式,用于在没有或稀缺训练集的低资源设置中应用机器学习模型,利用领域知识和启发式方法。我们进一步产生了基于监督的EPU指数薄弱

The need for timely data analysis for economic decisions has prompted most economists and policy makers to search for non-traditional supplementary sources of data. In that context, text data is being explored to enrich traditional data sources because it is easy to collect and highly abundant. Our work focuses on studying the potential of textual data, in particular news pieces, for measuring economic policy uncertainty (EPU). Economic policy uncertainty is defined as the public's inability to predict the outcomes of their decisions under new policies and future economic fundamentals. Quantifying EPU is of great importance to policy makers, economists, and investors since it influences their expectations about the future economic fundamentals with an impact on their policy, investment and saving decisions. Most of the previous work using news articles for measuring EPU are either manual or based on a simple keyword search. Our work proposes a machine learning based solution involving weak supervision to classify news articles with regards to economic policy uncertainty. Weak supervision is shown to be an efficient machine learning paradigm for applying machine learning models in low resource settings with no or scarce training sets, leveraging domain knowledge and heuristics. We further generated a weak supervision based EPU index that we used to conduct extensive econometric analysis along with the Irish macroeconomic indicators to validate whether our generated index foreshadows weaker macroeconomic performance

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源