论文标题
深度学习的Mori-Zwanzig表述
The Mori-Zwanzig formulation of deep learning
论文作者
论文摘要
我们基于不可逆转统计力学的莫里兹万齐(MZ)形式主义开发了深度学习的新表述。新的公式建立在深神经网络和离散动态系统之间的众所周知的二元性上,它使我们能够通过网络通过网络通过精确的线性操作员方程直接传播大量关注的量(条件期望和概率密度函数)。这种新方程可用作开发深神经网络的新有效参数化的起点,并提供了一个通过操作理论方法研究深入学习的新框架。提出的深度学习的MZ表述自然引入了一个新概念,即神经网络的记忆,该概念在低维建模和参数化中起着基本作用。通过使用收缩映射理论,我们开发了足够的条件,以使神经网络的记忆随着层数的数量而衰减。这使我们能够严格地将深网络转换为浅网络,例如,通过减少每层神经元的数量(使用投影操作员)或减少层总数(使用内存操作员的衰减属性)。
We develop a new formulation of deep learning based on the Mori-Zwanzig (MZ) formalism of irreversible statistical mechanics. The new formulation is built upon the well-known duality between deep neural networks and discrete dynamical systems, and it allows us to directly propagate quantities of interest (conditional expectations and probability density functions) forward and backward through the network by means of exact linear operator equations. Such new equations can be used as a starting point to develop new effective parameterizations of deep neural networks, and provide a new framework to study deep-learning via operator theoretic methods. The proposed MZ formulation of deep learning naturally introduces a new concept, i.e., the memory of the neural network, which plays a fundamental role in low-dimensional modeling and parameterization. By using the theory of contraction mappings, we develop sufficient conditions for the memory of the neural network to decay with the number of layers. This allows us to rigorously transform deep networks into shallow ones, e.g., by reducing the number of neurons per layer (using projection operators), or by reducing the total number of layers (using the decay property of the memory operator).