论文标题

解决子采样问题以从有限的数据中推断集体属性

Tackling the subsampling problem to infer collective properties from limited data

论文作者

Levina, Anna, Priesemann, Viola, Zierenberg, Johannes

论文摘要

复杂的系统令人着迷,因为它们丰富的宏观特性来自许多简单部分的相互作用。了解自然界这些新兴现象的建筑原理需要通过实验评估自然复杂系统。但是,尽管发展了大规模的数据收购技术,但实验观察通常仅限于系统的一小部分。在神经科学中,这种空间子采样特别严重,在神经科学中,只能记录几百万甚至数十亿个神经元的一小部分。当从次采样部分天真地推断整个系统的集体特性时,空间亚采样可能会导致严重的系统偏见。为了克服这种偏见,过去已经开发出强大的数学工具。从这个角度来看,我们概述了通过亚采样和评论引起的一些问题,最近开发了解决子采样问题的方法。这些方法使人们能够评估例如图形结构,动物的集体动态,神经网络活动或仅观察到系统的一小部分而正确地传播疾病。但是,我们目前的方法总体上还远没有解决子采样问题,因此我们通过概述了我们认为是主要开放挑战的结论。解决这些挑战以及大规模录音技术的发展将使进一步的基本见解对复杂和生活系统的工作。

Complex systems are fascinating because their rich macroscopic properties emerge from the interaction of many simple parts. Understanding the building principles of these emergent phenomena in nature requires assessing natural complex systems experimentally. However, despite the development of large-scale data-acquisition techniques, experimental observations are often limited to a tiny fraction of the system. This spatial subsampling is particularly severe in neuroscience, where only a tiny fraction of millions or even billions of neurons can be individually recorded. Spatial subsampling may lead to significant systematic biases when inferring the collective properties of the entire system naively from a subsampled part. To overcome such biases, powerful mathematical tools have been developed in the past. In this perspective, we overview some issues arising from subsampling and review recently developed approaches to tackle the subsampling problem. These approaches enable one to assess, e.g., graph structures, collective dynamics of animals, neural network activity, or the spread of disease correctly from observing only a tiny fraction of the system. However, our current approaches are still far from having solved the subsampling problem in general, and hence we conclude by outlining what we believe are the main open challenges. Solving these challenges alongside the development of large-scale recording techniques will enable further fundamental insights into the working of complex and living systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源