论文标题

COVIDMIS20:COVID-19使用深度学习模型在Twitter推文上的错误信息检测系统

CovidMis20: COVID-19 Misinformation Detection System on Twitter Tweets using Deep Learning Models

论文作者

Mulahuwaish, Aos, Osti, Manish, Gyorick, Kevin, Maabreh, Majdi, Gupta, Ajay, Qolomany, Basheer

论文摘要

在线新闻和信息来源是方便且可访问的方法来了解当前问题。例如,超过3亿人在全球Twitter上参与帖子,这提供了传播误导性信息的可能性。在许多情况下,由于虚假新闻,已经犯了暴力犯罪。 This research presents the CovidMis20 dataset (COVID-19 Misinformation 2020 dataset), which consists of 1,375,592 tweets collected from February to July 2020. CovidMis20 can be automatically updated to fetch the latest news and is publicly available at: https://github.com/everythingguy/CovidMis20.这项研究是使用BI-LSTM深度学习和合奏CNN+BI-GRU进行假新闻检测进行的。结果表明,测试精度分别为92.23%和90.56%,集合CNN+BI-GRU模型始终提供了比BI-LSTM模型更高的精度。

Online news and information sources are convenient and accessible ways to learn about current issues. For instance, more than 300 million people engage with posts on Twitter globally, which provides the possibility to disseminate misleading information. There are numerous cases where violent crimes have been committed due to fake news. This research presents the CovidMis20 dataset (COVID-19 Misinformation 2020 dataset), which consists of 1,375,592 tweets collected from February to July 2020. CovidMis20 can be automatically updated to fetch the latest news and is publicly available at: https://github.com/everythingguy/CovidMis20. This research was conducted using Bi-LSTM deep learning and an ensemble CNN+Bi-GRU for fake news detection. The results showed that, with testing accuracy of 92.23% and 90.56%, respectively, the ensemble CNN+Bi-GRU model consistently provided higher accuracy than the Bi-LSTM model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源