论文标题

收敛,速率,归一化无限拉普拉斯和相关方程的方法

Convergent, with rates, methods for normalized infinity Laplace, and related, equations

论文作者

Li, Wenbo, Salgado, Abner J.

论文摘要

我们提出了一个单调和一致的数值方案,用于归一化的无穷大拉拉曲板的Dirichlet问题的近似值,这可能与所谓的两种规模方法的家族有关。我们表明该方法是收敛的,并且证明了收敛速度。这些速率不仅取决于解决方案的规律性,还取决于右侧侧是否消失。还考虑了这种方法的一些扩展,例如障碍问题和对称的Finsler规范。

We propose a monotone, and consistent numerical scheme for the approximation of the Dirichlet problem for the normalized Infinity Laplacian, which could be related to the family of so--called two--scale methods. We show that this method is convergent, and prove rates of convergence. These rates depend not only on the regularity of the solution, but also on whether or not the right hand side vanishes. Some extensions to this approach, like obstacle problems and symmetric Finsler norms are also considered.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源