论文标题

$ \ MATHCAL {n} = 4 $ SYM中的集成相关器通过$ SL(2,\ Mathbb {Z})$ Spectral Theordion

Integrated Correlators in $\mathcal{N}=4$ SYM via $SL(2,\mathbb{Z})$ Spectral Theory

论文作者

Paul, Hynek, Perlmutter, Eric, Raj, Himanshu

论文摘要

我们对四维$ \ MATHCAL {n} = 4 $ SUPER YANG-MILLS理论的集成四点函数进行系统研究,该函数具有Gouge Group $ su(n)$。这些可观察物,由$ \ langle \ Mathcal {O} _2 \ Mathcal {O} _2 _2 \ Mathcal {O} _p \ Mathcal {o} _p \ Mathcal {o} _p \ p \ rangle $ where $ \ \ mathcal primation a a comconty是a的,超对称性定位是复杂量规耦合$τ$的非平凡功能。我们发现这些可观察到的几个类别的明确且非常简单的结果,完全是$ n $和$τ$的函数。在使用$ sl(2,\ mathbb {z})$频谱分解时,它们的物理和形式特性被大大阐明:在这种s偶尔性不变的eigenbasis中,集成的相关器在频谱参数中简单地由多项式固定。这些多项式由与不同的$ n $和$ p $相关的线性代数方程递归确定,从而使所有集成的相关器最终都根据$ su(2)$理论中的集成应力张量多重组来固定。我们的计算包括$ p $低值的集成相关器的完整矩阵,以及涉及任意$ p $的运营商的某些无限类。后者满足了所有$ n $的开放晶格链方程,让人想起由极值相关器在$ \ MATHCAL {n} = 2 $ SUPERCONSTORMEN -FORMONFORMEN -FORMONFORMAL PREANIORS中遵守的TODA方程。我们计算这些可观察物的合奏平均值,并以$ n $的大分分析我们的解决方案,确认并预测半经典广告的功能$ _5 \,\ times $ s $^5 $ supergravity振幅。

We perform a systematic study of integrated four-point functions of half-BPS operators in four-dimensional $\mathcal{N}=4$ super Yang-Mills theory with gauge group $SU(N)$. These observables, defined by a certain spacetime integral of $\langle\mathcal{O}_2\mathcal{O}_2\mathcal{O}_p\mathcal{O}_p\rangle$ where $\mathcal{O}_p$ is a superconformal primary of charge $p$, are known to be computable by supersymmetric localization, yet are non-trivial functions of the complexified gauge coupling $τ$. We find explicit and remarkably simple results for several classes of these observables, exactly as a function of $N$ and $τ$. Their physical and formal properties are greatly illuminated upon employing the $SL(2,\mathbb{Z})$ spectral decomposition: in this S-duality-invariant eigenbasis, the integrated correlators are fixed simply by polynomials in the spectral parameter. These polynomials are determined recursively by linear algebraic equations relating different $N$ and $p$, such that all integrated correlators are ultimately fixed in terms of the integrated stress tensor multiplets in the $SU(2)$ theory. Our computations include the full matrix of integrated correlators at low values of $p$, and a certain infinite class involving operators of arbitrary $p$. The latter satisfy an open lattice chain equation for all $N$, reminiscent of the Toda equation obeyed by extremal correlators in $\mathcal{N}=2$ superconformal theories. We compute ensemble averages of these observables and analyze our solutions at large $N$, confirming and predicting features of semiclassical AdS$_5\, \times$ S$^5$ supergravity amplitudes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源