论文标题
自组织的普遍性:原子打印机的途径?
The universality of self-organisation: a path to an atom printer?
论文作者
论文摘要
1989年,艾格勒(Eigler)和施韦泽(Schweizer)通过将35个单独的氙原原子定位在4 kelvin温度下,拼写了字母IBM。安排大约需要22个小时。这是对单个原子的控制的出色表现。从那时起,3D打印机发展成为一种近乎语调的技术。尽管如此,在微米中,典型的决议远非原子能控制,而IBM示范似乎是预示的。即使是使用驱动两光子聚合的超快激光器达到的最高分辨率,也几乎无法达到100 nm,距原子量表距离三个数量级。在这里,当我们询问3D原子打印机的可能性时,我们会采用长期的观点,该印刷机可以在室温下对其原子结构进行控制,从而建立一个任意形状的宏观维度对象。在讨论了基于直接激光写作的最先进技术之后,我们确定了三个基本挑战。首先是脂肪的问题,即激光波长比原子的大小大得多。第二个是复杂性爆炸。也就是说,处理步骤的数量缩放了分辨率的逆立方,从而导致了较长的处理时间。第三个挑战是随着我们接近原子量表,随机波动的强度越来越大。这需要控制波动,我们称之为波动的恶作剧。尽管直接撰写的技术为介观量表提供了足够的分辨率,速度和出色的灵活性,但三个基本问题中的每一个似乎都足以使原子量表无法达到无法达到的范围。相反,这三个挑战不是自我组织的根本局限性。我们提出了3D原子打印机的潜在途径,在该打印机中,激光驱动的自组织可以通过桥接原子和介镜尺度来补充直接编写技术。
In 1989, Eigler and Schweizer spelt the letters IBM by positioning 35 individual Xenon atoms at 4 Kelvin temperature. The arrangement took approximately 22 hours. This was an outstanding demonstration of control over individual atoms. Since then, 3D printers developed into a near-ubiquitous technology. Nevertheless, with typical resolutions in the micrometres, they are far from the atomic scale of control that the IBM demonstration seemed to herald. Even the highest resolution achieved with ultrafast lasers driving two-photon polymerization barely reaches 100 nm, three orders of magnitude distant from the atomic scale. Here, we adopt a long-term view when we ask about the possibility of a 3D atom printer, which can build an arbitrarily shaped object of macroscopic dimensions with control over its atomic structure at room temperature. After discussing the state-of-the-art technology based on direct laser writing, we identify three fundamental challenges. The first is the fat fingers problem, i.e., laser wavelengths are much larger than the size of the atoms. The second one is complexity explosion; namely, the number of processing steps scales with the inverse cube of the resolution, leading to prohibitively long processing times. The third challenge is the increasing strength of random fluctuations as we approach the atomic scale. This requires control over the fluctuations, which we call mischief of fluctuations. Although direct-writing techniques offer sufficient resolution, speed, and excellent flexibility for the mesoscopic scale, each of the three fundamental problems appears enough to render the atomic scale unreachable. In contrast, these three challenges are not fundamental limitations to self-organisation. We propose a potential path to a 3D atom printer, where laser-driven self-organisation can complement direct-writing techniques by bridging the atomic and mesoscopic scales.