论文标题
构成注意引导的轮廓到额外的面部识别
Pose Attention-Guided Profile-to-Frontal Face Recognition
论文作者
论文摘要
近年来,由于深度学习体系结构的有希望的进步,面部识别系统取得了非凡的成功。但是,当将配置图像与额叶图像的画廊匹配时,它们仍然无法实现预期的准确性。当前方法要么执行姿势归一化(即额叶化)或脱离姿势信息以进行面部识别。相反,我们提出了一种新方法,以通过注意机制将姿势用作辅助信息。在本文中,我们假设使用注意机制姿势参与了信息可以指导剖面面上的上下文和独特的特征提取,这进一步使嵌入式域中更好的表示形式学习。为了实现这一目标,首先,我们设计了一个统一的耦合轮廓到额外的面部识别网络。它通过特定于类的对比损失来学习从脸到紧凑的嵌入子空间的映射。其次,我们开发了一种新型的姿势注意力块(PAB),以特别指导档案面上的姿势 - 不合时宜的特征提取。更具体地说,PAB旨在明确地帮助网络专注于沿通道和空间维度的重要特征,同时学习嵌入子空间中的歧视性但构成不变的特征。为了验证我们提出的方法的有效性,我们对包括多PIE,CFP,IJBC在内的受控和野生基准进行了实验,并在艺术状态上表现出优势。
In recent years, face recognition systems have achieved exceptional success due to promising advances in deep learning architectures. However, they still fail to achieve expected accuracy when matching profile images against a gallery of frontal images. Current approaches either perform pose normalization (i.e., frontalization) or disentangle pose information for face recognition. We instead propose a new approach to utilize pose as an auxiliary information via an attention mechanism. In this paper, we hypothesize that pose attended information using an attention mechanism can guide contextual and distinctive feature extraction from profile faces, which further benefits a better representation learning in an embedded domain. To achieve this, first, we design a unified coupled profile-to-frontal face recognition network. It learns the mapping from faces to a compact embedding subspace via a class-specific contrastive loss. Second, we develop a novel pose attention block (PAB) to specially guide the pose-agnostic feature extraction from profile faces. To be more specific, PAB is designed to explicitly help the network to focus on important features along both channel and spatial dimension while learning discriminative yet pose invariant features in an embedding subspace. To validate the effectiveness of our proposed method, we conduct experiments on both controlled and in the wild benchmarks including Multi-PIE, CFP, IJBC, and show superiority over the state of the arts.