论文标题
许多与一个相对的:Fermionic量子物质中的疾病操作员和纠缠熵
Many versus one: the disorder operator and entanglement entropy in fermionic quantum matter
论文作者
论文摘要
由于疾病操作员的概念的最新发展及其与骨骼系统中的纠缠熵的关系,我们在这里显示了疾病操作员成功地探究了费米子多体系统中量子纠缠的许多方面。从1D和2D中的自由和相互作用的费米亚系统中的分析和数值计算中,我们发现疾病操作员和纠缠熵表现出相似的通用缩放行为,这是子系统边界长度的函数,但具有微妙而重要的差异。在1D中,他们均遵循$ \ log {l} $缩放行为,其系数由Luttinger参数用于疾病操作员的系数,以及纠缠熵的共形中心电荷。在2D中,它们都显示了自由和相互作用的费米液态状态的通用$ l \ log l $缩放行为,其系数取决于费米表面的几何形状。但是,在具有非富液液体状态的2D量子临界点处,在疾病操作员的设计中需要额外的对称信息,以揭示临界波动和纠缠熵的临界波动。我们的结果表明,Fermion障碍操作员可用于探测与全球对称性相关的量子多体纠缠,并提供了新工具来探索在2个或更高尺寸的高度纠缠Fermion量子物质的仍然未知的领域。
Motivated by recent development of the concept of the disorder operator and its relation with entanglement entropy in bosonic systems, here we show the disorder operator successfully probes many aspects of quantum entanglement in fermionic many-body systems. From both analytical and numerical computations in free and interacting fermion systems in 1D and 2D, we find the disorder operator and the entanglement entropy exhibit similar universal scaling behavior, as a function of the boundary length of the subsystem, but with subtle yet important differences. In 1D they both follow the $\log{L}$ scaling behavior with the coefficient determined by the Luttinger parameter for disorder operator, and the conformal central charge for entanglement entropy. In 2D they both show the universal $L\log L$ scaling behavior in free and interacting Fermi liquid states, with the coefficients depending on the geometry of the Fermi surfaces. However at a 2D quantum critical point with non-Fermi-liquid state, extra symmetry information is needed in the design of the disorder operator, so as to reveal the critical fluctuations as does the entanglement entropy. Our results demonstrate the fermion disorder operator can be used to probe quantum many-body entanglement related to global symmetry, and provides new tools to explore the still largely unknown territory of highly entangled fermion quantum matter in 2 or higher dimensions.