论文标题

预处理量子算法 - 密度矩阵重新归一化群量量子转换

Preentangling Quantum Algorithms -- the Density Matrix Renormalization Group-assisted Quantum Canonical Transformation

论文作者

Iqbal, Mohsin, Ramo, David Muñoz, Dreyer, Henrik

论文摘要

我们建议将无参数的preentanglers用作量子算法的初始状态。我们将这个想法应用于电子结构问题,结合了Yanai和Chan的规范变换的量化版本[J.化学物理。 124,194106(2006)],具有完整的活动空间密度矩阵重归其化组。这种新的ANSATZ允许改变量子和经典处理器之间的计算负担。在h $ _2 $ o,n $ _2 $,beh $ _2 $和P4系统的势能表面中多引用点附近,我们发现该策略要比相应的广义单一偶联集群电路所需的参数要少得多。我们提出了一种新算法,以根据单位的线性组合制备矩阵乘积状态,并将其与RAN提出的顺序单位算法进行比较。修订版A 101,032310(2020)]。

We propose the use of parameter-free preentanglers as initial states for quantum algorithms. We apply this idea to the electronic structure problem, combining a quantized version of the Canonical Transformation by Yanai and Chan [J. Chem. Phys. 124, 194106 (2006)] with the Complete Active Space Density Matrix Renormalization Group. This new ansatz allows to shift the computational burden between the quantum and the classical processor. In the vicinity of multi-reference points in the potential energy surfaces of H$_2$O, N$_2$, BeH$_2$ and the P4 system, we find this strategy to require significantly less parameters than corresponding generalized unitary coupled cluster circuits. We propose a new algorithm to prepare Matrix Product States based on the Linear Combination of Unitaries and compare it to the Sequential Unitary Algorithm proposed by Ran in [Phys. Rev. A 101, 032310 (2020)].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源