论文标题
3+1尺寸U(1)对称爱因斯坦的曲率传播
Curvature Propagation for the 3+1 Dimensional U(1) Symmetric Einstein Spacetimes
论文作者
论文摘要
众所周知,在初始值问题的背景下,爱因斯坦方程的全局结构是一个困难而复杂的数学问题。因此,其配方中的任何其他结构都是研究爱因斯坦方程初始值问题的全局行为的一种工具。在我们以前的作品中,我们使用了尺寸还原为$ 2+1 $尺寸爱因斯坦 - 波地图系统提供的其他结构。在这项工作中,我们将重点介绍U(1)对称空间的爱因斯坦方程中的另一个结构,即与Yang-Mills理论的类比,并与尺寸降低的场方程进行调和。
As it is well known, the global structure of the Einstein equations for general relativity in the context of the initial value problem, is a difficult and intricate mathematical problem. Therefore, any additional structure in their formulation is useful as a tool for studying the global behaviour of the initial value problem of the Einstein equations. In our previous works, we have used the additional structure provided by the dimensional reduction to $2+1$ dimensional Einstein-wave map system. In this work, we shall focus on yet another structure in the Einstein equations for the U(1) symmetric spacetimes, namely the analogy with the Yang-Mills theory and reconcile with the dimensionally reduced field equations.