论文标题

Spikesee:视网膜假体的节能动态场景处理框架

SpikeSEE: An Energy-Efficient Dynamic Scenes Processing Framework for Retinal Prostheses

论文作者

Wang, Chuanqing, Fang, Chaoming, Zou, Yong, Yang, Jie, Sawan, Mohamad

论文摘要

在这个时代,智能和低功率视网膜假体的需求高度要求,在这个时代,可穿戴和可植入的设备用于众多医疗保健应用。在本文中,我们提出了一个节能动态场景处理框架(Spikesee),该框架结合了尖峰表示编码技术和生物启发的尖峰复发性神经网络(SRNN)模型,以实现智能处理和极端的低功率计算,以实现视网膜疾病。尖峰表示编码技术可以用稀疏的尖峰火车来解释动态场景,从而减少数据量。采用了受人视网膜特殊结构和尖峰加工方法启发的SRNN模型,以预测神经节细胞对动态场景的响应。实验结果表明,所提出的SRNN模型的Pearson相关系数达到0.93,这表现优于视网膜假体的最先进的处理框架。得益于尖峰表示和SRNN处理,该模型可以以无倍数的方式提取视觉特征。与基于卷积的复发神经网络(CRNN)处理框架相比,该框架的功率减小了12倍。我们提出的Spikesee可以通过较低的能源消耗来更准确地预测神经节细胞的响应,从而减轻了视网膜假体的精度和功率问题,并为可穿戴或可植入的假体提供了潜在的解决方案。

Intelligent and low-power retinal prostheses are highly demanded in this era, where wearable and implantable devices are used for numerous healthcare applications. In this paper, we propose an energy-efficient dynamic scenes processing framework (SpikeSEE) that combines a spike representation encoding technique and a bio-inspired spiking recurrent neural network (SRNN) model to achieve intelligent processing and extreme low-power computation for retinal prostheses. The spike representation encoding technique could interpret dynamic scenes with sparse spike trains, decreasing the data volume. The SRNN model, inspired by the human retina special structure and spike processing method, is adopted to predict the response of ganglion cells to dynamic scenes. Experimental results show that the Pearson correlation coefficient of the proposed SRNN model achieves 0.93, which outperforms the state of the art processing framework for retinal prostheses. Thanks to the spike representation and SRNN processing, the model can extract visual features in a multiplication-free fashion. The framework achieves 12 times power reduction compared with the convolutional recurrent neural network (CRNN) processing-based framework. Our proposed SpikeSEE predicts the response of ganglion cells more accurately with lower energy consumption, which alleviates the precision and power issues of retinal prostheses and provides a potential solution for wearable or implantable prostheses.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源