论文标题

通过层次增强学习优化工业HVAC系统

Optimizing Industrial HVAC Systems with Hierarchical Reinforcement Learning

论文作者

Wong, William, Dutta, Praneet, Voicu, Octavian, Chervonyi, Yuri, Paduraru, Cosmin, Luo, Jerry

论文摘要

已经开发了增强学习(RL)技术来优化工业冷却系统,与传统的启发式政策相比,可节省大量能源。工业控制中的一个主要挑战涉及由于机械限制而在现实世界中可行的学习行为。例如,只能每隔几个小时执行某些操作,而其他动作可以更频繁地采取。如果没有广泛的奖励工程和实验,RL代理可能无法学习机械的现实操作。为了解决这个问题,我们使用层次结构的增强学习与多种根据操作时间尺度控制动作子集的代理。我们的分层方法可以在现有基准中节省能源,同时在模拟的HVAC控制环境中保持限制(例如在安全界限内操作冷却器)。

Reinforcement learning (RL) techniques have been developed to optimize industrial cooling systems, offering substantial energy savings compared to traditional heuristic policies. A major challenge in industrial control involves learning behaviors that are feasible in the real world due to machinery constraints. For example, certain actions can only be executed every few hours while other actions can be taken more frequently. Without extensive reward engineering and experimentation, an RL agent may not learn realistic operation of machinery. To address this, we use hierarchical reinforcement learning with multiple agents that control subsets of actions according to their operation time scales. Our hierarchical approach achieves energy savings over existing baselines while maintaining constraints such as operating chillers within safe bounds in a simulated HVAC control environment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源