论文标题

使用基于云的处理对fMRI大脑网络进行深刻标记

Deep Labeling of fMRI Brain Networks Using Cloud Based Processing

论文作者

Ghate, Sejal, Santamaria-Pang, Alberto, Tarapov, Ivan, Sair, Haris I, Jones, Craig K

论文摘要

静止状态fMRI是一种成像方式,它通过信号变化揭示了大脑活动的定位,这就是所谓的静止状态网络(RSN)。该技术在神经外科预设中越来越受欢迎,以可视化功能区域并评估区域活动。 RS-FMRI网络的标签需要主题的专业知识并且耗时,因此需要自动分类算法。尽管AI在医学诊断中的影响表现出了很大的进步。在临床环境中部署和维护这些是未满足的需求。我们提出了一个端到端可重现管道,该管道将RS-FMRI的图像处理结合在基于云的工作流程中,同时使用深度学习来自动化RSN的分类。我们已经构建了可重现的Azure机器学习基于云的医学成像概念管道,用于fMRI分析,集成了流行的FMRIB软件库(FSL)工具包。为了证明使用大数据集的临床应用,我们比较了三个神经网络架构,以分类从处理的RS-FMRI中得出的更深型RSN。这三种算法是:MLP,基于2D投影的CNN和一个完全3D CNN分类网络。每种网络均经过RS-FMRI背面投影的独立组件的训练,每种分类方法的精度> 98%。

Resting state fMRI is an imaging modality which reveals brain activity localization through signal changes, in what is known as Resting State Networks (RSNs). This technique is gaining popularity in neurosurgical pre-planning to visualize the functional regions and assess regional activity. Labeling of rs-fMRI networks require subject-matter expertise and is time consuming, creating a need for an automated classification algorithm. While the impact of AI in medical diagnosis has shown great progress; deploying and maintaining these in a clinical setting is an unmet need. We propose an end-to-end reproducible pipeline which incorporates image processing of rs-fMRI in a cloud-based workflow while using deep learning to automate the classification of RSNs. We have architected a reproducible Azure Machine Learning cloud-based medical imaging concept pipeline for fMRI analysis integrating the popular FMRIB Software Library (FSL) toolkit. To demonstrate a clinical application using a large dataset, we compare three neural network architectures for classification of deeper RSNs derived from processed rs-fMRI. The three algorithms are: an MLP, a 2D projection-based CNN, and a fully 3D CNN classification networks. Each of the net-works was trained on the rs-fMRI back-projected independent components giving >98% accuracy for each classification method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源