论文标题

来自应变诱导的开放费米表面的双层石墨烯中不寻常的磁转移

Unusual magnetotransport in twisted bilayer graphene from strain-induced open Fermi surfaces

论文作者

Wang, Xiaoyu, Finney, Joe, Sharpe, Aaron L., Rodenbach, Linsey K., Hsueh, Connie L., Watanabe, Kenji, Taniguchi, Takashi, Kastner, M. A., Vafek, Oskar, Goldhaber-Gordon, David

论文摘要

最近援引玩具霍夫史塔特模型中的各向异性跳跃,以解释在扭曲的双层石墨烯中测得的丰富而令人惊讶的兰道谱,从魔术角远离。怀疑这种各向异性可能是由于意外的单轴菌株而产生的,因此我们将Bistritzer-Macdonald模型扩展到包括单轴异质。我们发现这种菌株强烈影响带的结构,将三个原本取代的范霍夫转移到不同的能量。与Boltzmann磁转运计算相结合,这将复制以前没有说明的非饱和$ B^2 $磁磁性,而在填充$ν= \ pm 2 $附近的宽密度范围内,并预测了实验数据中未没有丝毫没有少的巧妙特征。与纵向电阻率中的这些独特的特征相反,大厅系数几乎不受应变的影响,以至于它仍然显示出电荷中性点的每一侧的单个符号变化 - 令人惊讶的是,此标志的变化不再发生在Van Hove Point。该理论还预测了电运输主轴的明显旋转,即使对于固定应变和刚性带,也是填充的函数。因此,可以按顺序对扭曲双层石墨烯中相互作用诱导的列和应变效应进行更仔细的检查。

Anisotropic hopping in a toy Hofstadter model was recently invoked to explain a rich and surprising Landau spectrum measured in twisted bilayer graphene away from the magic angle. Suspecting that such anisotropy could arise from unintended uniaxial strain, we extend the Bistritzer-MacDonald model to include uniaxial heterostrain. We find that such strain strongly influences band structure, shifting the three otherwise-degenerate van Hove points to different energies. Coupled to a Boltzmann magnetotransport calculation, this reproduces previously-unexplained non-saturating $B^2$ magnetoresistance over broad ranges of density near filling $ν=\pm 2$, and predicts subtler features that had not been noticed in the experimental data. In contrast to these distinctive signatures in longitudinal resistivity, the Hall coefficient is barely influenced by strain, to the extent that it still shows a single sign change on each side of the charge neutrality point -- surprisingly, this sign change no longer occurs at a van Hove point. The theory also predicts a marked rotation of the electrical transport principal axes as a function of filling even for fixed strain and for rigid bands. More careful examination of interaction-induced nematic order versus strain effects in twisted bilayer graphene could thus be in order.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源