论文标题

使用物理一致性对全息图重建的自我监督学习

Self-supervised learning of hologram reconstruction using physics consistency

论文作者

Huang, Luzhe, Chen, Hanlong, Liu, Tairan, Ozcan, Aydogan

论文摘要

过去十年中,深度学习在各种计算成像,传感和显微镜任务中的变革性应用。由于采用了监督的学习方案,这些方法主要取决于大规模,多样化和标记的培训数据。此类培训图像数据集的获取和准备通常很费力且昂贵,也导致对新样本类型的估计和概括有限。在这里,我们报告了一种称为Gedankennet的自我监督的学习模型,该模型消除了对标签或实验培训数据的需求,并证明了其对全息图重建任务的有效性和卓越的概括。如果没有关于要成像的样本类型的先验知识,则使用物理矛盾的损失和人为的随机图像训练了自我监督的学习模型,这些图像是合成生成的,没有任何实验或与现实世界样本的相似之处。在其自制训练之后,Gedankennet成功地概括为各种看不见的生物样品的实验全息图,并使用实验获得的测试全息图重建了不同类型对象的相位和振幅图像。 Gedankennet的自我监督学习实现了与Maxwell的方程一致的复杂图像重建,并且无法访问感兴趣的真实样本或其空间特征的实验数据或知识,与Maxwell的方程相一致,其输出推理和对象解决方案准确地代表了空间中的波浪传播。 Gedankennet框架还表现出对物理前向模型中随机,未知扰动的韧性,包括全息图距离的变化,像素大小和照明波长。对图像重建任务的自我监督学习为全息,显微镜和计算成像领域的各种反问题创造了新的机会。

The past decade has witnessed transformative applications of deep learning in various computational imaging, sensing and microscopy tasks. Due to the supervised learning schemes employed, these methods mostly depend on large-scale, diverse, and labeled training data. The acquisition and preparation of such training image datasets are often laborious and costly, also leading to biased estimation and limited generalization to new sample types. Here, we report a self-supervised learning model, termed GedankenNet, that eliminates the need for labeled or experimental training data, and demonstrate its effectiveness and superior generalization on hologram reconstruction tasks. Without prior knowledge about the sample types to be imaged, the self-supervised learning model was trained using a physics-consistency loss and artificial random images that are synthetically generated without any experiments or resemblance to real-world samples. After its self-supervised training, GedankenNet successfully generalized to experimental holograms of various unseen biological samples, reconstructing the phase and amplitude images of different types of objects using experimentally acquired test holograms. Without access to experimental data or knowledge of real samples of interest or their spatial features, GedankenNet's self-supervised learning achieved complex-valued image reconstructions that are consistent with the Maxwell's equations, and its output inference and object solutions accurately represent the wave propagation in free-space. GedankenNet framework also exhibits resilience to random, unknown perturbations in the physical forward model, including changes in the hologram distances, pixel size and illumination wavelength. This self-supervised learning of image reconstruction tasks creates new opportunities for various inverse problems in holography, microscopy and computational imaging fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源