论文标题

关于复杂时空中纺纱器的几何化

On Geometrization of Spinors in a Complex Spacetime

论文作者

Das, Santanu

论文摘要

尽管一般相对论提供了一个完整的重力理论,但它无法解释自然的其他三种力量,即电磁和弱和强相互作用。我们要求量子场理论(QFT)来解释它们。因此,在本文中,我们尝试将旋转器场几何化。我们在零歧管的切线空间中定义了一个参数坐标系,并表明这些参数坐标表现为旋转器。通过在零歧管的切线上引入一个复杂的内部超空间,我们表明我们可以获得八组此类参数坐标系,这些坐标系统可以作为八个旋转器场。这些纺纱场包含两个可以在SU下旋转的三重态(3)。这些纺纱片中的七个还与U(1)场相结合,具有不同的强度。我们还表明,尽管这些纺纱器可以分配张量$ 1/2 $或$ -1/2 $,但在$ l^p $空间中,坐标,而不是添加成二次的坐标,而是加上$ p $ th功率,我们可以获得一个包含Tensor重量$ 1/p $ $ 1/p $的参数空间。

While general relativity provides a complete geometric theory of gravity, it fails to explain the other three forces of nature, i.e., electromagnetism and weak and strong interactions. We require the quantum field theory (QFT) to explain them. Therefore, in this article, we try to geometrize the spinor fields. We define a parametric coordinate system in the tangent space of a null manifold and show that these parametric coordinates behave as spinors. By introducing a complex internal hyperspace on a tangent space of a null manifold, we show that we can get eight sets of such parametric coordinate systems that can behave as eight spinor fields. These spinor fields contain two triplets that can rotate among themselves under SU(3). Seven of these spinor fields also couple with a U(1) field with different strengths. We also show that while these spinors can be assigned a tensor weight $1/2$ or $-1/2$, in a $L^p$ space where the coordinates, instead of adding up in quadrature, add up in $p$th power, we can get a parametric space that contains similar spinors of tensor weight $1/p$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源