论文标题

提高在线手写识别的准确性和解释性

Improving Accuracy and Explainability of Online Handwriting Recognition

论文作者

Azimi, Hilda, Chang, Steven, Gold, Jonathan, Karabina, Koray

论文摘要

手写识别技术允许识别给定数据的书面文本。识别任务可以针对字母,符号或单词,并且输入数据可以是数字图像,也可以由各种传感器记录。从签名验证到电子文档处理的广泛应用可以通过实施高效,准确的手写识别算法来实现。多年来,人们对尝试不同类型的技术来收集手写数据,创建数据集并开发算法以识别角色和符号一直引起人们的兴趣。最近,已经发布了ONHW-CHARS数据集,其中包含使用带有传感器的圆珠笔收集的英语字母的多元时间序列数据。 ONHW-Chars的作者还通过其机器学习(ML)和深度学习(DL)分类器提供了一些基线结果。 在本文中,我们在ONHW-CHARS数据集上开发了手写识别模型,并提高了先前模型的准确性。更具体地说,我们的ML型号提供$ 11.3 \%$ - $ 23.56 \%$ $改进,而与以前的ML模型相比,我们具有合奏学习的优化DL型号提供了$ 3.08 \%$ -7.01 \%$ 7.01 \%$ $的改进。除了我们对频谱的准确性改进外,我们旨在为我们的模型提供一定程度的解释性,以便在所选方法背后提供更多逻辑,以及为什么模型对于数据集中的数据类型有意义。我们的结果可通过提供的公共存储库来验证且可重现。

Handwriting recognition technology allows recognizing a written text from a given data. The recognition task can target letters, symbols, or words, and the input data can be a digital image or recorded by various sensors. A wide range of applications from signature verification to electronic document processing can be realized by implementing efficient and accurate handwriting recognition algorithms. Over the years, there has been an increasing interest in experimenting with different types of technology to collect handwriting data, create datasets, and develop algorithms to recognize characters and symbols. More recently, the OnHW-chars dataset has been published that contains multivariate time series data of the English alphabet collected using a ballpoint pen fitted with sensors. The authors of OnHW-chars also provided some baseline results through their machine learning (ML) and deep learning (DL) classifiers. In this paper, we develop handwriting recognition models on the OnHW-chars dataset and improve the accuracy of previous models. More specifically, our ML models provide $11.3\%$-$23.56\%$ improvements over the previous ML models, and our optimized DL models with ensemble learning provide $3.08\%$-$7.01\%$ improvements over the previous DL models. In addition to our accuracy improvements over the spectrum, we aim to provide some level of explainability for our models to provide more logic behind chosen methods and why the models make sense for the data type in the dataset. Our results are verifiable and reproducible via the provided public repository.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源