论文标题

球形和棒状金纳米颗粒,用于表面增强的拉曼光谱法

Spherical and Rod-shaped Gold Nanoparticles for Surface Enhanced Raman Spectroscopy

论文作者

Alam, Md. Shaha, Farhad, Syed Farid Uddin, Tanvir, Nazmul Islam, Bitu, Md. Nur Amin, Moniruzzaman, Mohammad, Hakim, Mahmuda, Shaikh, Md Aftab Ali

论文摘要

拉曼光谱法提供了一种原位,快速和无损的表征工具,用于对没有或最少制备的各种样品进行化学分析。然而,由于常规拉曼光谱的固有信号固有的信号,在检测食品和食品中的痕量标记污染物中,已利用贵金属纳米颗粒的表面等离子体共振特征进行表面增强。在这项工作中,我们通过将氯龙酸(Haucl4)与柠檬酸钠脱水合成金纳米颗粒(AUNP)。我们在固定温度(100 oC)下制备了不同尺寸的AUNP,但pH值为4和8。ASSYNTHESIDE的AUNP的特征是通过UV-VIS光谱,动态光散射(DLS)和场发射扫描电子显微镜(FE-SEM)。 Fe-Sem显微照片揭示了球形AUNP,平均直径约为。 55 nm和杆状的AuNP,平均长度约为。分别在pH 8和4处进行样品合成的170 nm。通过检测痕量稀释的若丹明6G测试,预先准备的AUNPS对SERS的有效性进行了测试。这项研究表明,与SER相结合的等离激元纳米颗粒在检测其他痕量的食物和食品中有痕量的危险化学物质方面具有巨大的应用。

Raman Spectroscopy offers an in-situ, rapid, and non-destructive characterization tool for chemical analysis of diverse samples with no or minimal preparation. However, due to the inherent weak signal of conventional Raman spectroscopy, surface plasmon resonance features of noble metal nanoparticles have been utilized to conduct Surface Enhanced Raman Spectroscopy (SERS) in detecting trace label contaminants in foods and foodstuffs. In this effort, we synthesized gold nanoparticles (AuNPs) by reduction of chloroauric acid (HAuCl4) with sodium citrate dehydrate. We prepared different sizes of AuNPs at a fixed temperature (100 oC) but with varying pHs of 4 and 8. The as-synthesized AuNPs were characterized by UV-Vis spectroscopy, dynamic light scattering (DLS), and Field Emission Scanning Electron Microscopy (FE-SEM). FE-SEM micrographs revealed spherical AuNPs with an average diameter of approx. 55 nm and rod-shaped AuNPs with an average length of approx. 170 nm for sample synthesis at pH 8 and 4, respectively. The effectiveness of the as-prepared AuNPs for SERS is tested by detecting Rhodamine 6G diluted at a trace level. This study suggests that plasmonic nanoparticles coupled with SERS have great potential for broad applications in detecting other trace amounts of hazardous chemicals in foods and foodstuffs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源