论文标题

3D-PL:域自适应深度估计,具有3D感知伪标记

3D-PL: Domain Adaptive Depth Estimation with 3D-aware Pseudo-Labeling

论文作者

Yen, Yu-Ting, Lu, Chia-Ni, Chiu, Wei-Chen, Tsai, Yi-Hsuan

论文摘要

对于单眼深度估计,获取真实数据的地面真相并不容易,因此通常使用监督的合成数据采用域适应方法。但是,由于实际数据缺乏监督,这仍然可能会遇到较大的域间隙。在本文中,我们通过从真实数据中产生可靠的伪基础真理来开发一个域适应框架,以提供直接的监督。具体而言,我们提出了两种用于伪标记的机制:1)基于2D的伪标记,通过测量图像具有相同内容但样式不同的深度预测的一致性; 2)通过点云完成网络的3D感知伪标记,该网络学会完成3D空间中的深度值,从而在场景中提供更多的结构信息,以完善并生成更可靠的伪标签。在实验中,我们表明我们的伪标记方法可以改善各种环境中的深度估计,包括在训练过程中使用立体声对。此外,该提出的方法对现实世界数据集中的几种最新无监督域的适应方法表现出色。

For monocular depth estimation, acquiring ground truths for real data is not easy, and thus domain adaptation methods are commonly adopted using the supervised synthetic data. However, this may still incur a large domain gap due to the lack of supervision from the real data. In this paper, we develop a domain adaptation framework via generating reliable pseudo ground truths of depth from real data to provide direct supervisions. Specifically, we propose two mechanisms for pseudo-labeling: 1) 2D-based pseudo-labels via measuring the consistency of depth predictions when images are with the same content but different styles; 2) 3D-aware pseudo-labels via a point cloud completion network that learns to complete the depth values in the 3D space, thus providing more structural information in a scene to refine and generate more reliable pseudo-labels. In experiments, we show that our pseudo-labeling methods improve depth estimation in various settings, including the usage of stereo pairs during training. Furthermore, the proposed method performs favorably against several state-of-the-art unsupervised domain adaptation approaches in real-world datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源