论文标题
正向建模和快速旋转星中的模式识别
Forward modelling and the quest for mode identification in rapidly-rotating stars
论文作者
论文摘要
Asterosemology通过将振荡光谱特性与恒星的内部物理学联系起来,为数千颗恒星的内部物理学打开了一个窗口。模式识别,即将测得的振荡频率与相应模式几何和性质相关联的过程,是这种地震光谱分析的基石。在快速旋转的恒星中,这种识别是一项具有挑战性的任务,它仍然不完整,因为模式假设复杂的几何形状和频率的常规模式在科里奥利力和离心扁平的影响下被扰乱。 在本文中,我将首先讨论在快速旋转的恒星中出现的各种模式几何形状以及相关的频率和周期模式,如射线动力学,完整(非)绝热计算或使用传统的旋转近似值所预测。这些模式以结构量的规模扩展,并有助于我们对这些恒星的结构和演变产生至关重要的约束。我将总结过去几年来为重力模式脉动振荡光谱解密的惊人进步,以及基于机器学习分类技术的最新发展,以区分振荡模式和模式分析策略,从而使US访问压力脉动器的潜在物理学。这些方法为古典脉动脉动的集合星空学铺平了道路。 最后,我将强调如何将这些最新进度结合在一起以改善前向地震建模。我将重点介绍一个众所周知的快速旋转器Rasalhague的示例,以说明过程和获得此类恒星的à-la-carte建模所需的进步。
Asteroseismology has opened a window on the internal physics of thousands of stars, by relating oscillation spectra properties to the internal physics of stars. Mode identification, namely the process of associating a measured oscillation frequency to the corresponding mode geometry and properties, is the cornerstone of this analysis of seismic spectra. In rapidly rotating stars this identification is a challenging task that remains incomplete, as modes assume complex geometries and regular patterns in frequencies get scrambled under the influence of the Coriolis force and centrifugal flattening. In this article, I will first discuss the various classes of mode geometries that emerge in rapidly-rotating stars and the related frequency and period patterns, as predicted by ray dynamics, complete (non-)adiabatic calculations, or using the traditional approximation of rotation. These patterns scale with structural quantities and help us derive crucial constraints on the structure and evolution of these stars. I will summarize the amazing progress accomplished over the last few years for the deciphering of gravity-mode pulsator oscillation spectra, and recent developments based on machine-learning classification techniques to distinguish oscillation modes and pattern analysis strategies that let us access the underlying physics of pressure-mode pulsators. These approaches pave the way to ensemble asteroseismology of classical pulsators. Finally, I will highlight how these recent progress can be combined to improve forward seismic modelling. I will focus on the example of Rasalhague, a well-known rapid rotator, to illustrate the process and the needed advances to obtain à-la-carte modelling of such stars.