论文标题
Stein方法的改进界限用于多元正常随机向量的功能
Improved bounds in Stein's method for functions of multivariate normal random vectors
论文作者
论文摘要
在最近的一篇论文中,Gaunt 2020扩展Stein的方法限制了可以表示为函数$ g的分布:多变量正常随机矢量和$σ$非负确定协方差矩阵。在本文中,我们从较弱的矩条,较小的常数和更简单的形式中获得了改善的界限,因为$ g $具有具有多项式增长的衍生物。我们为Stein方程解决方案的衍生物获得了新的不均匀界限,并使用这些不平等获得距离的一般界限,使用平滑的测试功能,在$ g(\ MathBf {w} _n)$和$ g(\ sumbf {z})$的分布之间进行测量,其中$ \ mathbf {w} $ \ Mathbf {z} $是标准$ D $ - 二维多变量正常随机向量。对于两个细胞分类的情况,我们应用这些一般界限以获得功率差异统计家庭卡方近似的界限(特殊情况包括Pearson和似然比统计),从而改善了文献中现有的结果。
In a recent paper, Gaunt 2020 extended Stein's method to limit distributions that can be represented as a function $g:\mathbb{R}^d\rightarrow\mathbb{R}$ of a centered multivariate normal random vector $Σ^{1/2}\mathbf{Z}$ with $\mathbf{Z}$ a standard $d$-dimensional multivariate normal random vector and $Σ$ a non-negative definite covariance matrix. In this paper, we obtain improved bounds, in the sense of weaker moment conditions, smaller constants and simpler forms, for the case that $g$ has derivatives with polynomial growth. We obtain new non-uniform bounds for the derivatives of the solution of the Stein equation and use these inequalities to obtain general bounds on the distance, measured using smooth test functions, between the distributions of $g(\mathbf{W}_n)$ and $g(\mathbf{Z})$, where $\mathbf{W}_n$ is a standardised sum of random vectors with independent components and $\mathbf{Z}$ is a standard $d$-dimensional multivariate normal random vector. We apply these general bounds to obtain bounds for the chi-square approximation of the family of power divergence statistics (special cases include the Pearson and likelihood ratio statistics), for the case of two cell classifications, that improve on existing results in the literature.