论文标题

放射疗法中分歧间解剖变异的概率深度学习模型

A probabilistic deep learning model of inter-fraction anatomical variations in radiotherapy

论文作者

Pastor-Serrano, Oscar, Habraken, Steven, Hoogeman, Mischa, Lathouwers, Danny, Schaart, Dennis, Nomura, Yusuke, Xing, Lei, Perkó, Zoltán

论文摘要

在放射疗法中,治疗过程之间器官的内部运动会在最终辐射剂量递送中导致错误。运动模型可用于模拟运动模式并在输送前评估解剖学鲁棒性。传统上,这样的模型基于主成分分析(PCA),并且是患者特异性的(需要每名患者进行几次扫描)或基于人群,并对所有患者应用相同的变形。我们提出了一种混合方法,该方法基于人口数据,可以预测患者特定于患者的分数变化。我们提出了一个深度学习概率框架,该框架生成变形矢量场(DVFS)将患者的计划计算机断层扫描(CT)扭曲成可能的患者特异性解剖组。这种每日解剖模型(DAM)使用几乎没有随机变量捕获相关运动的组。给定一个新的计划CT,DAM估计了变量上的联合分布,每个样本来自分布与不同变形相对应。我们使用来自38名前列腺癌患者的312个CT对的数据集训练模型。对于另外2名患者(22 CT),我们计算真实图像和生成图像之间的轮廓重叠,并比较体积和质量变化中心的采样和地面真相分布。骰子得分为0.86,前列腺轮廓为1.09毫米,大坝匹配和基于PCA的模型的距离有所改善。该分布重叠进一步表明,大坝的采样运动与重复CT的每日变化的临床观察到的范围和频率相匹配。大坝仅以新患者的规划CT和新患者的轮廓为条件,可以准确预测在以下治疗过程中看到的CT,可用于解剖学上可靠的治疗计划和鲁棒性评估,以针对分流间解剖学变化。

In radiotherapy, the internal movement of organs between treatment sessions causes errors in the final radiation dose delivery. Motion models can be used to simulate motion patterns and assess anatomical robustness before delivery. Traditionally, such models are based on principal component analysis (PCA) and are either patient-specific (requiring several scans per patient) or population-based, applying the same deformations to all patients. We present a hybrid approach which, based on population data, allows to predict patient-specific inter-fraction variations for an individual patient. We propose a deep learning probabilistic framework that generates deformation vector fields (DVFs) warping a patient's planning computed tomography (CT) into possible patient-specific anatomies. This daily anatomy model (DAM) uses few random variables capturing groups of correlated movements. Given a new planning CT, DAM estimates the joint distribution over the variables, with each sample from the distribution corresponding to a different deformation. We train our model using dataset of 312 CT pairs from 38 prostate cancer patients. For 2 additional patients (22 CTs), we compute the contour overlap between real and generated images, and compare the sampled and ground truth distributions of volume and center of mass changes. With a DICE score of 0.86 and a distance between prostate contours of 1.09 mm, DAM matches and improves upon PCA-based models. The distribution overlap further indicates that DAM's sampled movements match the range and frequency of clinically observed daily changes on repeat CTs. Conditioned only on a planning CT and contours of a new patient without any pre-processing, DAM can accurately predict CTs seen during following treatment sessions, which can be used for anatomically robust treatment planning and robustness evaluation against inter-fraction anatomical changes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源