论文标题
胎儿超声深度学习模型对五个非洲国家低资源成像设置的概括性
Generalisability of fetal ultrasound deep learning models to low-resource imaging settings in five African countries
论文作者
论文摘要
大多数人工智能(AI)研究集中在高收入国家,其中成像数据,IT基础设施和临床专业知识丰富。但是,在需要医学成像的有限资源环境中取得了较慢的进步。例如,在撒哈拉以南非洲,由于获得产前筛查的机会有限,围产期死亡率的率很高。在这些国家,可以实施AI模型,以帮助临床医生获得胎儿超声平面以诊断胎儿异常。到目前为止,已经提出了深度学习模型来识别标准的胎儿平面,但是没有证据表明它们能够在有限访问高端超声设备和数据的中心中概括。这项工作研究了不同的策略,以减少在高资源临床中心训练并转移到新的低资源中心的胎儿平面分类模型的域转移效应。为此,首先在丹麦的一个新中心对1,792名来自西班牙的患者进行培训的分类器在最佳条件下以1,008例患者进行了优化,后来对五个非洲中心(埃及,阿尔及利亚,乌干达,加纳和马拉维)进行了优化,分别有25名患者,以达到相同的表现。结果表明,转移学习方法可以是将小型非洲样本与发达国家现有的大规模数据库相结合的解决方案。特别是,该模型可以通过将召回率提高到$ 0.92 \ pm0.04 $,同时在整个中心保持较高的精度来提高非洲人口的绩效。该框架显示了在临床中心构建可概括的新AI模型的希望,该模型在具有挑战性和异质条件下获得的数据有限,并呼吁进行进一步的研究,以开发用于资源较少国家的AI可用性的新解决方案。
Most artificial intelligence (AI) research have concentrated in high-income countries, where imaging data, IT infrastructures and clinical expertise are plentiful. However, slower progress has been made in limited-resource environments where medical imaging is needed. For example, in Sub-Saharan Africa the rate of perinatal mortality is very high due to limited access to antenatal screening. In these countries, AI models could be implemented to help clinicians acquire fetal ultrasound planes for diagnosis of fetal abnormalities. So far, deep learning models have been proposed to identify standard fetal planes, but there is no evidence of their ability to generalise in centres with limited access to high-end ultrasound equipment and data. This work investigates different strategies to reduce the domain-shift effect for a fetal plane classification model trained on a high-resource clinical centre and transferred to a new low-resource centre. To that end, a classifier trained with 1,792 patients from Spain is first evaluated on a new centre in Denmark in optimal conditions with 1,008 patients and is later optimised to reach the same performance in five African centres (Egypt, Algeria, Uganda, Ghana and Malawi) with 25 patients each. The results show that a transfer learning approach can be a solution to integrate small-size African samples with existing large-scale databases in developed countries. In particular, the model can be re-aligned and optimised to boost the performance on African populations by increasing the recall to $0.92\pm0.04$ and at the same time maintaining a high precision across centres. This framework shows promise for building new AI models generalisable across clinical centres with limited data acquired in challenging and heterogeneous conditions and calls for further research to develop new solutions for usability of AI in countries with less resources.