论文标题

SCGG:深层结构条件的图生成模型

SCGG: A Deep Structure-Conditioned Graph Generative Model

论文作者

Faez, Faezeh, Dijujin, Negin Hashemi, Baghshah, Mahdieh Soleymani, Rabiee, Hamid R.

论文摘要

基于深度学习的图生成方法具有显着的图形数据建模能力,从而使它们能够解决广泛的现实世界问题。使这些方法能够在生成过程中考虑不同的条件,甚至通过授权它们生成满足所需标准的新图形样本来提高其有效性。本文提出了一种有条件的深图生成方法,称为SCGG,该方法考虑了特定类型的结构条件。具体而言,我们提出的SCGG模型采用初始子图,并自动重新收集到在给定条件子结构之上的新节点及其相应的边缘。 SCGG的体系结构由图表表示网络和自回归生成模型组成,该模型是端到端训练的。使用此模型,我们可以解决图形完成,这是恢复缺失的节点及其相关的部分观察图的猖and固有的困难问题。合成和现实世界数据集的实验结果证明了我们方法的优越性与最先进的基准相比。

Deep learning-based graph generation approaches have remarkable capacities for graph data modeling, allowing them to solve a wide range of real-world problems. Making these methods able to consider different conditions during the generation procedure even increases their effectiveness by empowering them to generate new graph samples that meet the desired criteria. This paper presents a conditional deep graph generation method called SCGG that considers a particular type of structural conditions. Specifically, our proposed SCGG model takes an initial subgraph and autoregressively generates new nodes and their corresponding edges on top of the given conditioning substructure. The architecture of SCGG consists of a graph representation learning network and an autoregressive generative model, which is trained end-to-end. Using this model, we can address graph completion, a rampant and inherently difficult problem of recovering missing nodes and their associated edges of partially observed graphs. Experimental results on both synthetic and real-world datasets demonstrate the superiority of our method compared with state-of-the-art baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源