论文标题
在呼吸运动伪影下使用转移学习的心脏分割
Cardiac Segmentation using Transfer Learning under Respiratory Motion Artifacts
论文作者
论文摘要
对心脏磁共振成像(MRI)进行室内分割时具有弹性的方法,对于确保对这些组织的结构和功能分析的质量至关重要。尽管在提高算法的质量方面做出了重大努力,但很少有作品能够应对伪像在预测中产生的危害。在这项工作中,我们研究了经过预计的网络的微调,以提高以前方法对这些工件的弹性。在我们提出的方法中,我们采用了模仿这些人工制品的数据增强的广泛使用。结果显着改善了基线分段(最高0.06骰子得分,而Hausdorff的距离提高了4mm)。
Methods that are resilient to artifacts in the cardiac magnetic resonance imaging (MRI) while performing ventricle segmentation, are crucial for ensuring quality in structural and functional analysis of those tissues. While there has been significant efforts on improving the quality of the algorithms, few works have tackled the harm that the artifacts generate in the predictions. In this work, we study fine tuning of pretrained networks to improve the resilience of previous methods to these artifacts. In our proposed method, we adopted the extensive usage of data augmentations that mimic those artifacts. The results significantly improved the baseline segmentations (up to 0.06 Dice score, and 4mm Hausdorff distance improvement).